Advertisement

Single-Molecule Conductance Theory Using Different Orbitals for Different Spins: Applications to π-Electrons in Graphene Molecules

  • Anatoliy V. Luzanov
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)

Abstract

In the present paper, we consider many-body π-electron models and computational tools for treating single-molecule conductance in middle-size graphene molecules. Our study highlights the importance of accounting for long-range interactions and electron-correlation effects which are crucial for a correct description of electron transmission in conjugated systems. Here we construct one-electron Green’s function matrix for the half-projected Hartree-Fock method implementing the different orbitals for different spins (DODS) approach. Moreover, the simplified DODS in the form of quasi-correlated tight-binding (QCTB) and related models are invoked. We compare these electron-correlation models with the usual tight-binding (TB) approximation and show that TB is actually incorrect as a single-molecule conductance theory of graphenic and similar structures. In our specific applications, we calculate the conductance spectra for small graphene nanoflakes and find, in particular, that “zigzag” connections can afford significantly higher electron transmission than “armchair” connections.

Abbreviations

AO

Atomic orbital

DODS

Different orbitals for different spins

EHF

Extended Hartree-Fock

FCI

Full configuration interaction

GF

Green’s function

GQD

Graphene quantum dot

HPHF

Half-projected Hartree-Fock

MO

Molecular orbital

MSE

Molecular-scale electronics

QCLRI

Quasi-correlated long-range interaction

QCTB

Quasi-correlated tight-binding (model)

RHF

Restricted Hartree-Fock

TB

Tight-binding (model)

UHF

Unrestricted Hartree-Fock

WBL

Wide-band limit

References

  1. 1.
    Cuevas JC, Scheer E (2017) Molecular electronics: an introduction to theory and experiment, 2nd edn. World Scientific, SingaporeCrossRefGoogle Scholar
  2. 2.
    Solomon GC, Herrmann C, Ratner MA (2012) Molecular electronic junction transport: some pathways and some ideas. Top Curr Chem 313:1–38Google Scholar
  3. 3.
    Metzger RM (2015) Unimolecular electronics. Chem Rev 115:5056–5115CrossRefGoogle Scholar
  4. 4.
    Moth-Poulsen K (ed) (2016) Handbook of single-molecule electronics. Pan Stanford Publishing Pte Ltd, SingaporeGoogle Scholar
  5. 5.
    Xiang D, Wang X, Jia C, Lee T, Guo X (2016) Molecular-scale electronics: from concept to function. Chem Rev 116:4318–4440CrossRefGoogle Scholar
  6. 6.
    Tsuji Y, Estrada E, Movassagh R, Hoffmann R (2018) Quantum interference, graphs, walks, and polynomials. Chem Rev 118:4887–4911CrossRefGoogle Scholar
  7. 7.
    Ernzerhof M, Bahmann H, Goyer F, Zhuang M, Rocheleau P (2006) Electron transmission through aromatic molecules. J Chem Theory Comput 2:1291–1297CrossRefGoogle Scholar
  8. 8.
    Fowler PW, Pickup BT, Todorova TZ, Myrvold W (2009) Conduction in graphenes. J Chem Phys 131:244110-1-8ADSGoogle Scholar
  9. 9.
    Markussen T, Stadler R, Thygesen KS (2010) The relation between structure and quantum interference in single molecule junctions. Nano Lett 10:4260–4265ADSCrossRefGoogle Scholar
  10. 10.
    Pedersen KGL, Borges A, Hedegård P, Solomon GC, Strange M (2015) Illusory connection between cross-conjugation and quantum interference. J Phys Chem C 119:26919–26924CrossRefGoogle Scholar
  11. 11.
    Tsuji Y, Hoffmann R, Movassagh R, Datta S (2014) Quantum interference in polyenes. J Chem Phys 141:224311-1-13ADSCrossRefGoogle Scholar
  12. 12.
    Markussen T, Stadler R, Thygesen KS (2011) Graphical prediction of quantum interference-induced transmission nodes in functionalized organic molecules. Phys Chem Chem Phys 13:14311–14317CrossRefGoogle Scholar
  13. 13.
    Wang X, Spataru CD, Hybertsen MS, Millis AJ (2008) Electronic correlation in nanoscale junctions: comparison of the GW approximation to a numerically exact solution of the single-impurity Anderson model. Phys Rev B 77:045119-1-10ADSGoogle Scholar
  14. 14.
    Bergfield JP, Stafford CA (2009) Many-body theory of electronic transport in single-molecule heterojunctions. Phys Rev B 79:245125-1-10ADSCrossRefGoogle Scholar
  15. 15.
    Yeriskin I, McDermott S, Bartlett RJ, Fagas G, Greer JC (2010) Electronegativity and electron currents in molecular tunnel junctions. J Phys Chem C 114:20564–20568CrossRefGoogle Scholar
  16. 16.
    Bergfield JP, Solomon GC, Stafford CA, Ratner MA (2011) Novel quantum interference effects in transport through molecular radicals. Nano Lett 11:2759–2764ADSCrossRefGoogle Scholar
  17. 17.
    Goyer F, Ernzerhof M (2011) Correlation effects in molecular conductors. J Chem Phys 134:174101-1-10ADSCrossRefGoogle Scholar
  18. 18.
    Pedersen KGL, Strange M, Leijnse M, Hedegard P, Solomon GC, Paaske J (2014) Quantum interference in off-resonant transport through single molecules. Phys Rev B 90:125413-1-11ADSCrossRefGoogle Scholar
  19. 19.
    Hoy EP, Mazziotti DA, Seideman T (2017) Development and application of a 2-electron reduced density matrix approach to electron transport via molecular junctions. J Chem Phys 147:184110-1-8ADSCrossRefGoogle Scholar
  20. 20.
    Luzanov AV (2019) Single-molecule electronic materials: conductance of π-conjugated oligomers within quasi-correlated tight-binding model. Funct. Mater 26:152–163CrossRefGoogle Scholar
  21. 21.
    Luzanov AV (2014) Effectively unpaired electrons in bipartite lattices within the generalized tight-binding approximation: application to graphene nanoflakes. Funct Mater 21:437–447CrossRefGoogle Scholar
  22. 22.
    Luzanov AV (2016) Effectively unpaired electrons for singlet states: from diatomics to graphene nanoclusters. In: Leszczynski J, Shukla MK (eds) Practical aspects of computational chemistry IV. Springer, Boston, pp 151–206Google Scholar
  23. 23.
    Luzanov AV, Plasser F, Das A, Lischka H (2017) Evaluation of the quasi correlated tight-binding (QCTB) model for describing polyradical character in polycyclic hydrocarbons. J Chem Phys 146:064106-1-12ADSCrossRefGoogle Scholar
  24. 24.
    Davison SG, Amos AT (1965) Spin polarized orbitals for localized states in crystals. J Chem Phys 43:2223–2233ADSCrossRefGoogle Scholar
  25. 25.
    Estrada E (2018) The electron density function of the Hückel (tight-binding) model. Proc R Soc A474:20170721-1-18ADSzbMATHGoogle Scholar
  26. 26.
    Smeyers YG, Doreste-Suarez L (1973) Half-projected and projected Hartree-Fock calculations for singlet ground states. I. Four-electron atomic systems. Int J Quantum Chem 7:687–698CrossRefGoogle Scholar
  27. 27.
    Cox PA, Wood MN (1976) The half-projected Hartree-Fock method. I. Eigenvalue formulation and simple application. Theor Chim Acta 41:269–278CrossRefGoogle Scholar
  28. 28.
    Luzanov AV (1985) The spin-symmetrized Hartree-Fock method. J Struct Chem 25:837–844CrossRefGoogle Scholar
  29. 29.
    Bone RGA, Pulay P (1992) Half-projected Hartree-Fock natural orbitals for defining CAS–SCF active spaces. Int J Quant Chem 45:133–166CrossRefGoogle Scholar
  30. 30.
    Smeyers YG (2000) The half projected Hartree-Fock model for determining singlet excited states. Adv Quant Chem 36:253–270CrossRefGoogle Scholar
  31. 31.
    Verzijl CJO, Seldenthuis JS, Thijssen JM (2013) Applicability of the wide-band limit in DFT-based molecular transport calculations. J Chem Phys 138:094102-1-10ADSCrossRefGoogle Scholar
  32. 32.
    Jhan S-M, Jin B-Y (2017) A simple molecular orbital treatment of current distributions in quantum transport through molecular junctions. J Chem Phys 147:194106-1-10ADSCrossRefGoogle Scholar
  33. 33.
    Langer W, Plischke M, Mattis D (1969) Existence of two phase transitions in Hubbard model. Phys Rev Lett 23:1448–1452ADSCrossRefGoogle Scholar
  34. 34.
    Langer W, Mattis D (1971) Ground state energy of Hubbard model. Phys Lett A3:139–140ADSCrossRefGoogle Scholar
  35. 35.
    Tyutyulkov N (1975) A generalized formula for the energies of alternant molecular orbitals. I. Homonuclear molecules. I J Quantum Chem 9:683–68936CrossRefGoogle Scholar
  36. 36.
    Löwdin P-O (1955) Quantum theory of many-particle systems. III. Extension of the Hartree-Fock scheme to include degenerate systems and correlation effects. Phys Rev 97:1505–1520ADSMathSciNetGoogle Scholar
  37. 37.
    Waller I, Hartree DR (1929) On the intensity of total scattering of X-rays. Proc R Soc London A124:119–142ADSCrossRefGoogle Scholar
  38. 38.
    Lyakh DI, Musiał M, Lotrich VF, Bartlett RJ (2011) Multireference nature of chemistry: the coupled-cluster view. Chem Rev 112:182–243CrossRefGoogle Scholar
  39. 39.
    Tada T, Yoshizawa K (2002) Quantum transport effects in nanosized graphite sheets. Chem Phys Chem 3:1035–1037CrossRefGoogle Scholar
  40. 40.
    Morikawa T, Narita S, Klein DJ (2005) Molecular electric conductance and long-bond structure counting for conjugated-carbon nano-structures. Chem Phys Lett 402:554–558ADSCrossRefGoogle Scholar
  41. 41.
    Schomerus H (2007) Effective contact model for transport through weakly-doped graphene. Phys Rev B 76:045433-1-7ADSCrossRefGoogle Scholar
  42. 42.
    Cuansing E, Wang JS (2009) Quantum transport in honeycomb lattice ribbons with armchair and zigzag edges coupled to semi-infinite linear chain leads. Euro Phys J B69:505–513ADSCrossRefGoogle Scholar
  43. 43.
    Nelson T, Zhang B, Prezhdo OV (2010) Detection of Nucleic Acids with Graphene Nanopores: Ab Initio Characterization of a Novel Sequencing Device. Nano Lett 10:3237–3242ADSCrossRefGoogle Scholar
  44. 44.
    Rangel NL, Leon-Plata PA, Seminario JM (2012) Computational Molecular Engineering for Nanodevices and Nanosystems. In: Leszczynski J, Shukla MK (eds) Practical aspects of computational chemistry I. Springer, Heidelberg, pp 347–383Google Scholar
  45. 45.
    Qiu W, Skafidas E (2013) Quantum conductance of armchair graphene nanopores with edge impurities. J Chem Phys: 114: 073703–073701–8ADSCrossRefGoogle Scholar
  46. 46.
    Güçlü AD, Potasz P, Korkusinski M, Hawrylak P (2014) Graphene Quantum Dots. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  47. 47.
    Luzanov A (2018) Graphene Quantum Dots in Various Many-Electron π-Models. In: Fesenko O, Yatsenko L (eds) Nanophysics, nanophotonics, and applications. Springer proceedings in physics, vol 210. Springer, Cham, pp 161–174Google Scholar
  48. 48.
    Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu JJ, Ajayan PM (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849ADSCrossRefGoogle Scholar
  49. 49.
    McWeeny R (1992) Methods of molecular quantum mechanics. Academic Press, LondonGoogle Scholar
  50. 50.
    Goscinski O, Lindner P (2003) Natural spin-orbitals and generalized overlap amplitudes. J Math Phys 11:1313–1317ADSCrossRefGoogle Scholar
  51. 51.
    Albert AE (1972) Regression and the Moore-Penrose pseudoinverse. Academic Press, New YorkzbMATHGoogle Scholar
  52. 52.
    Amos AT, Woodward M (1969) Configuration-interaction wavefunctions for small pi systems. J Chem Phys 50:119–123ADSCrossRefGoogle Scholar
  53. 53.
    Luzanov AV, Ivanov VV, Boichenko IV (1996) Semiempirical determination of Dyson’s states in conjugated systems within a full-CI π-electron scheme. J Mol Struct (THEOCHEM) 360:167–174CrossRefGoogle Scholar
  54. 54.
    Pople JA, Hush NS (1955) Ionization potentials and electron affinities of conjugated hydrocarbon molecules and radicals. Trans Faraday Soc 51:600–605CrossRefGoogle Scholar
  55. 55.
    McLachlan AD (1959) The pairing of electronic states in alternant hydrocarbons. Mol Phys 2:271–284ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anatoliy V. Luzanov
    • 1
  1. 1.SSI “Institute of Single Crystals”, NAS of UkraineKharkivUkraine

Personalised recommendations