Challenges in Studying the Incorporation of Nanomaterials to Building Materials on Microbiological Models

  • Adrian Augustyniak
  • Pawel Sikora
  • Krzysztof Cendrowski
  • Paweł Nawrotek
  • Ewa Mijowska
  • Dietmar Stephan
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)


The versatility of nanomaterials allows their use in multiple applications. Their properties can be used in cementitious composites in order to mitigate the problem of microbiologically induced deterioration. Nevertheless, incorporating nanomaterials to such composites is associated with the agglomeration of nanoparticles and their release to the natural environment. There are multiple methods to assess the toxicity of nanomaterials, where microorganisms are used as model for studies. Even though microbial models are advisable, their use should be adjusted to the conditions in which the nanomaterial will be present. This includes a careful selection of test microorganisms that requires the description of their properties and environmental meaning. Current studies are focused on the toxicity, although metabolic characteristics, such as the possible stimulation of metabolism caused by the contact with a nanomaterial, are often omitted. This chapter describes issues associated with studying nanosized cement admixtures on microbiological models with indication on microorganisms that could be used for that purpose along with some of their characteristics.


Cementitious composites Microbiological evaluation Nanomaterials Toxicity 



This work was supported by the National Science Centre within the project No. 2016/21/N/ST8/00095 (PRELUDIUM 11).


  1. 1.
    Vupputuri S, Fathepure BZ, Wilber GG et al (2015) Isolation of a sulfur-oxidizing Streptomyces sp. from deteriorating bridge structures and its role in concrete deterioration. Int Biodeter Biodegr 97:128–134. CrossRefGoogle Scholar
  2. 2.
    Sikora P, Augustyniak A (2017) Utilization of nanomaterials for reduction of microbiologically induced deterioration (MID) of cement-based composites. In: Çınar Ö (ed) III international conference on sustainable development. Book of proceedings, Sarajevo, Bosnia and Herzegovina, pp 33–36Google Scholar
  3. 3.
    Flemming HC, Wingender J, Szewzyk U et al (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575. CrossRefGoogle Scholar
  4. 4.
    Cwalina B (2008) Biodeterioration of concrete. Archit Civ Eng Environ 4:133–140. CrossRefGoogle Scholar
  5. 5.
    Wei S, Jiang Z, Liu H et al (2013) Microbiologically induced deterioration of concrete-A review. Braz J Microbiol 44:1001–1007CrossRefGoogle Scholar
  6. 6.
    ISO ISO/TS 80004-2:2015 Nanotechnologies – vocabulary – part 2: nano-objectsGoogle Scholar
  7. 7.
    ISO ISO/TR 11360:2010 Nanotechnologies – methodology for the classification and categorization of nanomaterialsGoogle Scholar
  8. 8.
    Zhu W, Bartos PJM, Porro A (2004) Application of nanotechnology in construction summary of a state-of-the-art report. Mater Struct Constr 37:649–658. CrossRefGoogle Scholar
  9. 9.
    Silvestre J, Silvestre N, de Brito J (2016) Review on concrete nanotechnology. Eur J Environ Civ Eng 20:455–485. CrossRefGoogle Scholar
  10. 10.
    Gibb A, Jones W, Goodier C et al (2017) Nanotechnology in construction and demolition – what we know, what we don’t. Report for the Institution of Occupational Safety and HealthGoogle Scholar
  11. 11.
    Rashad AM (2013) A synopsis about the effect of nano-Al2O3, nano-Fe2O3, nano-Fe3O4 and nano-clay on some properties of cementitious materials – a short guide for Civil Engineer. Mater Des 52:143–157. CrossRefGoogle Scholar
  12. 12.
    Stynoski P, Mondal P, Wotring E, Marsh C (2013) Characterization of silica-functionalized carbon nanotubes dispersed in water. J Nanopart Res 15:1396. CrossRefGoogle Scholar
  13. 13.
    Sikora P, Cendrowski K, Markowska-Szczupak A et al (2017) The effects of silica/titania nanocomposite on the mechanical and bactericidal properties of cement mortars. Construct Build Mater 150:738–746. CrossRefGoogle Scholar
  14. 14.
    Sikora P, Abd Elrahman M, Chung S-Y et al (2019) Mechanical and microstructural properties of cement pastes containing carbon nanotubes and carbon nanotube-silica core-shell structures, exposed to elevated temperature. Cem Concr Compos 95:193–204. CrossRefGoogle Scholar
  15. 15.
    Bolhassani M, Sayyahmanesh M (2015) A study on mechanical properties of cement paste using magnetite-silica nano-composites. Adv Cem Res 27:571–580. CrossRefGoogle Scholar
  16. 16.
    Sanchez F, Sobolev K (2010) Nanotechnology in concrete – a review. Construct Build Mater 24:2060–2071. CrossRefGoogle Scholar
  17. 17.
    Hunger M, Hüsken G, Brouwers HJH (2009) Photocatalytic degradation of air pollutants – from modeling to large scale application. Cem Concr Res 40:313–320. CrossRefGoogle Scholar
  18. 18.
    Giese B, Klaessig F, Park B et al (2018) Risks, release and concentrations of engineered nanomaterial in the environment. Sci Rep 8:1565. ADSCrossRefGoogle Scholar
  19. 19.
    Hincapié I, Caballero-Guzmán A, Nowack B (2015) Nanomaterials in landfills module 3: nanomaterials in construction waste. EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. GallenGoogle Scholar
  20. 20.
    Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22. CrossRefGoogle Scholar
  21. 21.
    Maya B-S, Barcaro G, Bettotti P et al (2013) Springer handbook of nanomaterials. Springer, BerlinGoogle Scholar
  22. 22.
    Sharifi S, Behzadi S, Laurent S et al (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343. CrossRefGoogle Scholar
  23. 23.
    Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85:3036–3049. CrossRefGoogle Scholar
  24. 24.
    Kumar A, Pandey AK, Singh SS et al (2011) Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83:1124–1132. ADSCrossRefGoogle Scholar
  25. 25.
    Ge Y, Schimel JP, Holden P (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664. ADSCrossRefGoogle Scholar
  26. 26.
    Rousk J, Ackermann K, Curling SF, Jones DL (2012) Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS One 7:1–8. CrossRefGoogle Scholar
  27. 27.
    Hao Y, Ma C, Zhang Z et al (2018) Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environ Pollut 232:123–136. CrossRefGoogle Scholar
  28. 28.
    Rodrigues DF, Jaisi DP, Elimelech M (2013) Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environ Sci Technol 47:625–633. ADSCrossRefGoogle Scholar
  29. 29.
    Pacheco-Torgal F, Jalali S (2011) Nanotechnology: advantages and drawbacks in the field of construction and building materials. Construct Build Mater 25:582–590. CrossRefGoogle Scholar
  30. 30.
    Kobetičová K, Černý R (2017) Ecotoxicology of building materials: a critical review of recent studies. J Clean Prod 165:500–508. CrossRefGoogle Scholar
  31. 31.
    ACI (2017) ACI 241R-17 Report on application of nanotechnology and nanomaterials in concreteGoogle Scholar
  32. 32.
    Fu PP, Xia Q, Hwang HM et al (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64–75. CrossRefGoogle Scholar
  33. 33.
    Burello E, Worth AP (2011) A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 5:228–235. CrossRefGoogle Scholar
  34. 34.
    Ding Y, Kuhlbusch TAJ, Van Tongeren M et al (2017) Airborne engineered nanomaterials in the workplace—a review of release and worker exposure during nanomaterial production and handling processes. J Hazard Mater 322:17–28. CrossRefGoogle Scholar
  35. 35.
    Boverhof DR, David RM (2010) Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation. Anal Bioanal Chem 396:953–961. CrossRefGoogle Scholar
  36. 36.
    Caballero-Guzman A, Nowack B (2016) A critical review of engineered nanomaterial release data: are current data useful for material flow modeling? Environ Pollut 213:502–517. CrossRefGoogle Scholar
  37. 37.
    Jones W, Gibb A, Goodier C et al (2016) Nanomaterials in construction–what is being used, and where? Proc Inst Civ Eng Mater:1–14. CrossRefGoogle Scholar
  38. 38.
    Świdwińska-Gajewska AM, Czerczak S (2017) Nanorurki węglowe-charakterystyka substancji, działanie biologiczne i dopuszczalne poziomy narażenia zawodowego. Med Pr 68:259–276. [in Polish]CrossRefGoogle Scholar
  39. 39.
    Nawrotek P, Augustyniak A (2015) Nanotechnologia w mikrobiologii - wybrane aspekty. Postep Mikrobiol 54:275–282. [in Polish]Google Scholar
  40. 40.
    Sikora P, Augustyniak A, Cendrowski K et al (2018) Antimicrobial activity of Al2O3, CuO, Fe3O4, and ZnO nanoparticles in scope of their further application in cement-based building materials. Nanomaterials 8:212. CrossRefGoogle Scholar
  41. 41.
    Michael I, Hapeshi E, Michael C et al (2012) Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res 46:5621–5634. CrossRefGoogle Scholar
  42. 42.
    Oukarroum A, Barhoumi L, Samadani M, Dewez D (2015) Toxic effects of nickel oxide bulk and nanoparticles on the aquatic plant Lemna gibba L. Biomed Res Int 2015:1–7. CrossRefGoogle Scholar
  43. 43.
    Zhu X, Chang Y, Chen Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78:209–215. ADSCrossRefGoogle Scholar
  44. 44.
    Zhu X, Wang J, Zhang X et al (2009) The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 20:1–9. CrossRefGoogle Scholar
  45. 45.
    Baniamerian H, Safavi M, Alvarado-Morales M et al (2018) Photocatalytic inactivation of Vibrio fischeri using Fe2O3-TiO2-based nanoparticles. Environ Res 166:497–506. CrossRefGoogle Scholar
  46. 46.
    Li Y, Chen DH, Yan J et al (2012) Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutat Res Genet Toxicol Environ Mutagen 745:4–10. CrossRefGoogle Scholar
  47. 47.
    Pande S, Kost C (2017) Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol 25:349–361. CrossRefGoogle Scholar
  48. 48.
    Holden P, Schimel JP, Godwin H (2014) Five reasons to use bacteria when assessing manufactured nanomaterial environmental hazards and fates. Curr Opin Biotechnol 27:73–78. CrossRefGoogle Scholar
  49. 49.
    Mukhtar S, Zaheer A, Aiysha D et al (2017) Actinomycetes: a source of industrially important enzymes. J Proteomics Bioinform 10:316–319. CrossRefGoogle Scholar
  50. 50.
    Hodge GA, Maynard AD, Bowman DM (2014) Nanotechnology: rhetoric, risk and regulation. Sci Public Policy 41:1–14. CrossRefGoogle Scholar
  51. 51.
    Hannah W, Thompson PB (2008) Nanotechnology, risk and the environment: a review. J Environ Monit 10:291–300. CrossRefGoogle Scholar
  52. 52.
    Amenta V, Aschberger K, Arena M et al (2015) Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol 73:463–476. CrossRefGoogle Scholar
  53. 53.
    Handy RD, Cornelis G, Fernandes T et al (2012) Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31:15–31. CrossRefGoogle Scholar
  54. 54.
    Klaine SJ, Alvarez PJJ, Batley GE et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851. CrossRefGoogle Scholar
  55. 55.
    Holden P, Klaessig F, Turco RF et al (2014) Evaluation of exposure concentrations used in assessing manufactured nanomaterial environmental hazards: are they relevant? Environ Sci Technol 48:10541–10551. ADSCrossRefGoogle Scholar
  56. 56.
    Karcagi I, Draskovits G, Umenhoffer K et al (2016) Indispensability of horizontally transferred genes and its impact on bacterial genome streamlining. Mol Biol Evol 33:1257–1269. CrossRefGoogle Scholar
  57. 57.
    Struk M, Grygorcewicz B, Nawrotek P et al (2017) Enhancing effect of 50 Hz rotating magnetic field on induction of Shiga toxin-converting lambdoid prophages. Microb Pathog 109:4–7. CrossRefGoogle Scholar
  58. 58.
    Palleroni NJ (2015). Pseudomonas. In: Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, DeVos P, Hedlund B, Dedysh S (eds) Bergey’s manual of systematics of archaea and bacteria.
  59. 59.
    Kämpfer P (2015). Streptomyces. In: Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, DeVos P, Hedlund B, Dedysh S (eds) Bergey’s manual of systematics of archaea and bacteria.
  60. 60.
    Solecka J, Ziemska J, Rajnisz A et al (2013) Promieniowce - Wystȩpowanie i wytwarzanie zwia̧zków biologicznie czynnych. Postep Mikrobiol 52:83–91. [in Polish]Google Scholar
  61. 61.
    Hopwood DA (2007) Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press, New YorkGoogle Scholar
  62. 62.
    de Lima Procópio RE, da Silva IR, Martins MK et al (2012) Antibiotics produced by Streptomyces. Braz J Infect Dis 16:466–471. CrossRefGoogle Scholar
  63. 63.
    Murakami T, Burian J, Yanai K et al (2011) A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor. Proc Natl Acad Sci 108:16020–16025. ADSCrossRefGoogle Scholar
  64. 64.
    Stankovic N, Radulovic V, Petkovic M et al (2012) Streptomyces sp. JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties. Appl Microbiol Biotechnol 96:1217–1231. CrossRefGoogle Scholar
  65. 65.
    Kieser T, Bibb MJ, Buttner MJ et al (2000) Practical Streptomyces genetics. John Innes Centre Ltd, NorwichGoogle Scholar
  66. 66.
    Pradesh U, Bhanjan M, Pradesh U (2015) Isolation and characterization of streptomycetes with plant growth promoting potential from mangrove ecosystem. Pol J Microbiol 64:339–349CrossRefGoogle Scholar
  67. 67.
    Chater KF (2016) Recent advances in understanding Streptomyces. F1000Research 5:1–16. ADSCrossRefGoogle Scholar
  68. 68.
    Nonoh JO, Lw W et al (2010) Isolation and characterization of Streptomyces species with antifungal activity from selected national parks in Kenya. Afr J Microbiol Res 4:856–864Google Scholar
  69. 69.
    de Jesus Sousa JA, Olivares FL (2016) Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chem Biol Technol Agric 3:1–12. CrossRefGoogle Scholar
  70. 70.
    Park H, Hong M, Hwang S et al (2014) Characterisation of Pseudomonas aeruginosa related to bovine mastitis. Acta Vet Hung 62:1–12. CrossRefGoogle Scholar
  71. 71.
    Tanti B, Buragohain AK (2013) Biodegradation of petroleum tar by Pseudomonas spp. from oil field of Assam, India. Biorem J 17:107–112. CrossRefGoogle Scholar
  72. 72.
    Royer M, Larbat R, Le Bot J et al (2016) Tomato response traits to pathogenic Pseudomonas species: does nitrogen limitation matter? Plant Sci 244:57–67. CrossRefGoogle Scholar
  73. 73.
    Ganeshan G, Kumar AM (2007) Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. J Plant Interact 1:123–134. CrossRefGoogle Scholar
  74. 74.
    Goswami D, Vaghela H, Parmar S et al (2013) Plant growth promoting potentials of Pseudomonas spp. strain OG isolated from marine water. J Plant Interact 8:281–290. CrossRefGoogle Scholar
  75. 75.
    Horst AM, Neal AC, Mielke RE et al (2010) Dispersion of TiO2 nanoparticle agglomerates by Pseudomonas aeruginosa. Appl Environ Microbiol 76:7292–7298. CrossRefGoogle Scholar
  76. 76.
    Guo M-Z, Ling T-C, Poon C-S (2013) Nano-TiO2-based architectural mortar for NO removal and bacteria inactivation: influence of coating and weathering conditions. Cem Concr Compos 36:101–108CrossRefGoogle Scholar
  77. 77.
    Sikora P, Augustyniak A, Cendrowski K et al (2016) Characterization of mechanical and bactericidal properties of cement mortars containing waste glass aggregate and nanomaterials. Materials (Basel) 9:1–16. CrossRefGoogle Scholar
  78. 78.
    Guo M-Z, Ling T-C, Poon C-S (2012) TiO2-based self-compacting glass mortar: comparison of photocatalytic nitrogen oxide removal and bacteria inactivation. Build Environ 53:1–6ADSCrossRefGoogle Scholar
  79. 79.
    Bhuvaneshwari M, Bairoliya S, Parashar A et al (2016) Differential toxicity of Al2O3 particles on Gram-positive and Gram-negative sediment bacterial isolates from freshwater. Environ Sci Pollut Res 23:12095–12106. CrossRefGoogle Scholar
  80. 80.
    Adeolu M, Alnajar S, Naushad SGR (2016) Genome based phylogeny and taxonomy of the “Enterobacteriales”: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 66:5575–5599. CrossRefGoogle Scholar
  81. 81.
    Nawrotek P, Grygorcewicz B, Augustyniak A (2017) Changes in the taxonomy of γ-Proteobacteria, modification of the order Enterobacteriales and novel families within Enterobacterales ord. nov. Postep Mikrobiol 56:465–469. [in Polish]Google Scholar
  82. 82.
    Rzewuska M, Czopowicz M, Kizerwetter-Świda M et al (2015) Multidrug resistance in Escherichia coli strains isolated from infections in dogs and cats in Poland (2007–2013). Sci World J 2015:1–8. CrossRefGoogle Scholar
  83. 83.
    Van Elsas JD, Semenov AV, Costa R, Trevors JT (2010) Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J 5:173–183. CrossRefGoogle Scholar
  84. 84.
    Bachmann BJ (1996) Derivations and genotypes of some mutant derivatives of Escherichia coli K-12, 2nd edn. ASM Press, Washington, DCGoogle Scholar
  85. 85.
    NCBI Taxonomy Browser, search item “Escherichia coli.” 1&unlock. Accessed 30 Nov 2019
  86. 86.
    Beer C, Foldbjerg R, Hayashi Y et al (2012) Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett 208:286–292. CrossRefGoogle Scholar
  87. 87.
    Parveen S, Rana S, Fangueiro R (2013) A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J Nanomater 2013:1–19. CrossRefGoogle Scholar
  88. 88.
    Mendoza O, Sierra G, Tobón JI (2014) Effect of the reagglomeration process of multi-walled carbon nanotubes dispersions on the early activity of nanosilica in cement composites. Construct Build Mater 54:550–557. CrossRefGoogle Scholar
  89. 89.
    Stephens C, Brown L, Sanchez F (2016) Quantification of the re-agglomeration of carbon nanofiber aqueous dispersion in cement pastes and effect on the early age flexural response. Carbon N Y 107:482–500. CrossRefGoogle Scholar
  90. 90.
    Mateos R, Vera S, Valiente M et al (2017) Comparison of anionic, cationic and nonionic surfactants as dispersing agents for graphene based on the fluorescence of riboflavin. Nanomaterials 7:1–17. CrossRefGoogle Scholar
  91. 91.
    O’Toole GA (2011) Microtiter dish biofilm formation assay. JoVE 47:1–2. CrossRefGoogle Scholar
  92. 92.
    Rasamiravaka T, Labtani Q, Duez P, El Jaziri M (2015) The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int 2015:759348. CrossRefGoogle Scholar
  93. 93.
    Latimer J, Forbes S, McBain AJ (2012) Attenuated virulence and biofilm formation in Staphylococcus aureus following sublethal exposure to triclosan. Antimicrob Agents Chemother 56:3092–3100. CrossRefGoogle Scholar
  94. 94.
    Wood TK (2009) Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ Microbiol 11:1–15. CrossRefGoogle Scholar
  95. 95.
    Augustyniak A, Cendrowski K, Nawrotek P et al (2016) Investigating the interaction between Streptomyces sp. and titania/silica nanospheres. Water Air Soil Pollut 227(230):1–13. CrossRefGoogle Scholar
  96. 96.
    Lemire J, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384. CrossRefGoogle Scholar
  97. 97.
    Lemire J, Alhasawi A, Appanna VP et al (2017) Metabolic defence against oxidative stress: the road less travelled so far. J Appl Microbiol 123:798–809. CrossRefGoogle Scholar
  98. 98.
    Ge Y, Schimel JP, Holdena P (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78:6749–6758. CrossRefGoogle Scholar
  99. 99.
    Fodil D, Jaouadi B, Badis A et al (2012) A thermostable humic acid peroxidase from Streptomyces sp. strain AH4: purification and biochemical characterization. Bioresour Technol 111:383–390. CrossRefGoogle Scholar
  100. 100.
    Maurer-Jones M, Gunsolus IL, Meyer BM et al (2013) Impact of TiO2 nanoparticles on growth, biofilm formation, and flavin secretion in Shewanella oneidensis. Anal Chem 85:5810–5818. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adrian Augustyniak
    • 1
    • 2
  • Pawel Sikora
    • 2
    • 3
  • Krzysztof Cendrowski
    • 4
  • Paweł Nawrotek
    • 1
  • Ewa Mijowska
    • 4
  • Dietmar Stephan
    • 2
  1. 1.Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal HusbandryWest Pomeranian University of TechnologySzczecinPoland
  2. 2.Building Materials and Construction Chemistry, Technische Universität BerlinBerlinGermany
  3. 3.Faculty of Civil Engineering and ArchitectureWest Pomeranian University of TechnologySzczecinPoland
  4. 4.Nanomaterials Physicochemistry Department, Faculty of Chemical Technology and EngineeringWest Pomeranian University of TechnologySzczecinPoland

Personalised recommendations