Advertisement

Synthesis, Morphology, Structure, and Luminescence Properties of Bi-Containing Phosphates: Review and Detailed Consideration on the Example of Pr3+-doped BiPO4 Nanopowders

  • V. Chornii
  • V. Boyko
  • S. G. NedilkoEmail author
  • M. Slobodyanik
  • K. Terebilenko
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)

Abstract

Short review and new data about Bi-containing phosphates luminescence properties are presented in this work. Analysis of luminescence properties together with data on electronic band structures of some phosphates was performed. Literature data concerning impacts of particle sizes, morphology, and polymorph compositions on photoluminescence characteristics have been analyzed and discussed. The methods of BiPO4 phosphate compound synthesis, in particular in forms of nanopowders, have been discussed in detail. Peculiarities of crystal and electronic band structures for two monoclinic polymorphs of perfect BiPO4 as well as for high-temperature monoclinic BiPO4 with oxygen vacancy and PrPO4 crystals have been analyzed. Absorption and reflectance spectra were obtained from electronic band structure calculations for monoclinic polymorphs. The set of Pr3+-doped BiPO4 nanopowders was chosen as model object in this work. Polycrystalline samples of Bi1−xPrxPO4 (x = 0.001–0.1) and PrPO4 were prepared by solid-state reaction methods. The obtained samples were characterized by X-ray diffraction, scanning electron microscopy, and luminescent spectroscopy. The mechanisms of photoluminescence excitation and emission are discussed together with data on structure and morphology of the samples.

Keywords

Phosphate Bismuth Praseodymium Zirconium Band structure Band gap Luminescence 

References

  1. 1.
    Pan C, Zhu Y (2011) Size-controlled synthesis of BiPO4 nanocrystals for enhanced photocatalytic performance. J Mater Chem 21(12):4235–4241.  https://doi.org/10.1039/C0JM03655B CrossRefGoogle Scholar
  2. 2.
    Huang H, Chen G, Zhang Y (2014) Two Bi-based phosphate photocatalysts: crystal structure, optical property and photocatalytic activity. Inorg Chem Commun 44:46–49.  https://doi.org/10.1016/j.inoche.2014.02.047 CrossRefGoogle Scholar
  3. 3.
    Li X, Elshahawy AM, Guan C, Wang J (2017) Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13(39):1701530.  https://doi.org/10.1002/smll.201701530 CrossRefGoogle Scholar
  4. 4.
    Nedilko S, Hizhnyi Y, Chukova O et al (2009) Luminescent monitoring of metal dititanium triphosphates as promising materials for radioactive waste confinement. J Nuclear Mater 385(2):479–484.  https://doi.org/10.1016/j.jnucmat.2008.12.034 ADSCrossRefGoogle Scholar
  5. 5.
    Ginebra MP, Traykova T, Planell JA (2006) Calcium phosphate cements as bone drug delivery systems: a review. J Control Release 113(2):102–110.  https://doi.org/10.1016/j.jconrel.2006.04.007 CrossRefGoogle Scholar
  6. 6.
    Ludwig J, Nilges T (2018) Recent progress and developments in lithium cobalt phosphate chemistry-syntheses, polymorphism and properties. J Power Sources 382:101–115.  https://doi.org/10.1016/j.jpowsour.2018.02.038 CrossRefGoogle Scholar
  7. 7.
    Kaneyoshi M (2006) Luminescence of some zirconium-containing compounds under vacuum ultraviolet excitation. J Lumin 121(1):102–108.  https://doi.org/10.1016/j.jlumin.2005.09.017 CrossRefGoogle Scholar
  8. 8.
    Miao CR, Torardi CC (2000) A new high-efficiency UV-emitting X-ray phosphor, BaHf1-xZrx(PO4)2. J Solid State Chem 155(1):229–232.  https://doi.org/10.1006/jssc.2000.8938 ADSCrossRefGoogle Scholar
  9. 9.
    Torardi CC, Miao CR, Li J (2003) Efficient UV-emitting X-ray phosphors: octahedral Zr(PO4)6 luminescence centers in potassium hafnium–zirconium phosphates K2Hf1-xZrx(PO4)2 and KHf2(1-x)Zr2x (PO4)3. J Solid State Chem 170(2):289–293.  https://doi.org/10.1016/S0022-4596(02)00087-7 ADSCrossRefGoogle Scholar
  10. 10.
    Hizhnyi Y, Chornii V, Nedilko S et al (2013) Luminescence spectroscopy and electronic structure of ZrP2O7 and KZr2(PO4)3 crystals. Radiat Meas 56:397–401.  https://doi.org/10.1016/j.radmeas.2013.01.068 CrossRefGoogle Scholar
  11. 11.
    Nedilko S, Nagornii P, Nedyelko I et al (2009) Nature of intrinsic and impure luminescence of MAlP2O7 crystals. Opt Mater 31(12):1828–1830.  https://doi.org/10.1016/j.optmat.2008.12.023 ADSCrossRefGoogle Scholar
  12. 12.
    Boyko V, Nedilko SG, Hizhnyi Y et al (2015) Synthesis, luminescence and electronic band structure of Al(PO3)3 crystals. Solid State Phenom 230:73–78.  https://doi.org/10.4028/www.scientific.net/SSP.230.73 CrossRefGoogle Scholar
  13. 13.
    Nedilko S, Hizhnyi Y, Chornii V et al (2013) Possibility of application of ZrP2O7 and KZr2(PO4)3 intrinsic luminescence for monitoring of γ-irradiation. Sens Lett 11(10):1937–1944.  https://doi.org/10.1166/sl.2013.2756 CrossRefGoogle Scholar
  14. 14.
    Nedilko S, Chornii V (2013) Electronic band structure and luminescence properties of powdered ZrP2O7 crystals. Ukr J Phys Opt 14(4):187–195.  https://doi.org/10.3116/16091833/14/4/187/2013 CrossRefGoogle Scholar
  15. 15.
    Hizhnyi Y, Gomenyuk O, Nedilko S et al (2007) Electronic structure and optical properties of ABP2O7 double phosphates. Radiat Meas 42(4-5):719–722.  https://doi.org/10.1016/j.radmeas.2007.02.012 CrossRefGoogle Scholar
  16. 16.
    Hizhnyi YA, Oliynyk A, Gomenyuk O et al (2008) The electronic structure and optical properties of ABP2O7 (A= Na, Li) double phosphates. Opt Mater 30(5):687–689.  https://doi.org/10.1016/j.optmat.2007.02.009 ADSCrossRefGoogle Scholar
  17. 17.
    Nakazawa E, Shiga F (1977) Vacuum ultraviolet luminescence-excitation spectra of RPO4:Eu3+ (R= Y, La, Gd and Lu). J Lumin 15(3):255–259.  https://doi.org/10.1016/0022-2313(77)90024-2 CrossRefGoogle Scholar
  18. 18.
    Moncorge R, Boulon G, Denis JP (1979) Fluorescence properties of bismuth-doped LaPO4. J Phys C Solid State Phys 12(6):1165.  https://doi.org/10.1088/0022-3719/12/6/028 ADSCrossRefGoogle Scholar
  19. 19.
    Boulon G, Pedrini C, Guidoni M, Pannel C (1975) Étude de la cinétique des centres luminogènes Bi3+ dans les cristaux. J Phys France 36(3):267–278.  https://doi.org/10.1051/jphys:01975003603026700 CrossRefGoogle Scholar
  20. 20.
    Blasse G, Dirksen GJ (1982) The luminescence of broad-band emitters in LiLaP4O12. Phys Stat Sol (b) 110(2):487–494.  https://doi.org/10.1002/pssb.2221100214 ADSCrossRefGoogle Scholar
  21. 21.
    Hizhnyi Y (2016) Luminescence spectroscopy and electronic structure of Zr-and Bi-containing phosphate crystals. Ukr J Phys Opt 17(1):32–38.  https://doi.org/10.3116/16091833/17/1/32/2016 CrossRefGoogle Scholar
  22. 22.
    Hizhnyi YA, Nedilko SG, Chornii VP et al (2014) Electronic structures and origin of intrinsic luminescence in Bi-containing oxide crystals BiPO4, K3Bi5(PO4)6, K2Bi(PO4)(MoO4), K2Bi(PO4)(WO4) and K5Bi(MoO4)4. J Alloys Compd 614:420–435.  https://doi.org/10.1016/j.jallcom.2014.06.111 CrossRefGoogle Scholar
  23. 23.
    Zatovsky IV, Strutynska NY, Hizhnyi YA et al (2018) New complex phosphates Cs3MIIBi(P2O7)2 (MII–Ca, Sr and Pb): synthesis, characterization, crystal and electronic structure. Dalton Trans 47(7):2274–2284.  https://doi.org/10.1039/c7dt04505k CrossRefGoogle Scholar
  24. 24.
    Chornii V, Hizhnyi Y, Nedilko SG et al (2015) Synthesis, crystal structure, luminescence and electronic band structure of K2BiZr(PO4)3 phosphate compound. Solid State Phenom 230:55–61.  https://doi.org/10.4028/www.scientific.net/SSP.230.55 CrossRefGoogle Scholar
  25. 25.
    Pimpalshende DM, Dhoble SJ (2015) Stability of luminescence in LaPO4, LaPO4: RE3+ (RE= Dy, Eu) nanophosphors. Luminescence 30(2):144–154.  https://doi.org/10.1002/bio.2705 CrossRefGoogle Scholar
  26. 26.
    Zhang L, Fu L, Yang X et al (2014) Controlled synthesis and tunable luminescence of uniform YPO40.8H2O and YPO40.8H2O: Tb3+/Eu3+ nanocrystals by a facile approach. J Mater Chem C 2(43):9149–9158.  https://doi.org/10.1039/C4TC01427H CrossRefGoogle Scholar
  27. 27.
    Guan M, Sun J, Tao F, Xu Z (2008) A host crystal for the rare-earth ion dopants: synthesis of pure and Ln-doped urchin like BiPO4 structure and its photoluminescence. Cryst Growth Des 8(8):2694–2697.  https://doi.org/10.1021/cg070642z CrossRefGoogle Scholar
  28. 28.
    Xue F, Li H, Zhu Y et al (2009) Solvothermal synthesis and photoluminescence properties of BiPO4 nano-cocoons and nanorods with different phases. J Solid State Chem 182(6):1396–1400.  https://doi.org/10.1016/j.jssc.2009.02.031 ADSCrossRefGoogle Scholar
  29. 29.
    Wang WN, Widiyastuti W, Ogi T et al (2007) Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors. Chem Mater 19(7):1723–1730.  https://doi.org/10.1021/cm062887p CrossRefGoogle Scholar
  30. 30.
    Kharieky AA, Saraee KRE, Strek W (2017) The size effect on luminescence properties of praseodymium doped LuAG prepared by Pechini method. J Lumin 190:443–450.  https://doi.org/10.1016/j.jlumin.2017.05.078 CrossRefGoogle Scholar
  31. 31.
    Chen X, Liu Y, Tu D (2016) Lanthanide-doped luminescent nanomaterials. From fundamentals to bioapplications. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  32. 32.
    Riwotzki K, Meyssamy H, Schnablegger H et al (2001) Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO4:Ce,Tb nanocrystals. Ang Chem Intl Ed 40(3):573–576.  https://doi.org/10.1002/1521-3773(20010202)40:3<573::AID-ANIE573>3.0.CO;2-0 CrossRefGoogle Scholar
  33. 33.
    Shi X, Liu Y, Zhang J et al (2015) Enhanced luminescence properties of BiPO4:Eu3+ phosphors prepared by hydrothermal method. Ceram Int 41(5):6683–6686.  https://doi.org/10.1016/j.ceramint.2015.01.089 CrossRefGoogle Scholar
  34. 34.
    Zhao M, Li G, Li L et al (2012) Structures and polymorph-sensitive luminescence properties of BiPO4/Eu grown in hydrothermal conditions. Cryst Growth Des 12(8):3983–3991.  https://doi.org/10.1021/cg300451d CrossRefGoogle Scholar
  35. 35.
    Liu S, Zhang W, Hu Z et al (2013) Synthesis and luminescent properties of Eu3+ and Dy3+ doped BiPO4 phosphors for near UV-based white LEDs. J Mater Sci Mater Electron 24(11):4253–4257.  https://doi.org/10.1007/s10854-013-1393-x CrossRefGoogle Scholar
  36. 36.
    Hizhnyi Y, Chornii V, Nedilko S et al (2016) Luminescence spectroscopy of Ln-doped Bi-containing phosphates and molybdates. Radiat Meas 90:314–318.  https://doi.org/10.1016/j.radmeas.2016.01.014 CrossRefGoogle Scholar
  37. 37.
    Roming M, Feldmann C (2009) Synthesis and characterization of nanoscaled BiPO4 and BiPO4:Tb. J Mater Sci 44(5):1412.  https://doi.org/10.1007/s10853-009-3258-5 ADSCrossRefGoogle Scholar
  38. 38.
    Arunkumar P, Jayajothi C, Jeyakumar D, Lakshminarasimhan N (2012) Structure–property relations in hexagonal and monoclinic BiPO4: Eu3+ nanoparticles synthesized by polyol-mediated method. RSC Adv 2(4):1477–1485.  https://doi.org/10.1039/C1RA00389E CrossRefGoogle Scholar
  39. 39.
    Naidu BS, Vishwanadh B, Sudarsan V, Vatsa RK (2012) BiPO4: a better host for doping lanthanide ions. Dalton Trans 41(11):3194–3203.  https://doi.org/10.1039/c2dt11944g CrossRefGoogle Scholar
  40. 40.
    Chornii V, Nedilko S, Bychkov K et al (2018) Synthesis and luminescence properties of Pr3+-doped BiPO4 polycrystals. Acta Phys Pol A 133(4):843–846.  https://doi.org/10.12693/APhysPolA.133.843 CrossRefGoogle Scholar
  41. 41.
    Chadeyron-Bertrand G, Vial S, Cellier J et al (2005) Influence of processing parameters on the luminescence of sol–gel derived PrPO4. Mater Res Bull 40(9):1477–1482.  https://doi.org/10.1016/j.materresbull.2005.04.023 CrossRefGoogle Scholar
  42. 42.
    Boutinaud P, Mahiou R, Cavalli E, Bettinelli M (2007) Red luminescence induced by intervalence charge transfer in Pr3+-doped compounds. J Lumin 122:430–433.  https://doi.org/10.1016/j.jlumin.2006.01.198 CrossRefGoogle Scholar
  43. 43.
    Yang R, Xiaoye HU, Tao LIU et al (2011) Pr3+-doped Li2SrSiO4 red phosphor for white LEDs. J Rare Earths 29(3):198–201.  https://doi.org/10.1016/S1002-0721(10)60430-9 CrossRefGoogle Scholar
  44. 44.
    Fidelus JD, Yatsunenko S, Godlewski M et al (2009) Relation between structural properties of Pr3+-doped yttria-stabilized zirconia nanopowders and their luminescence efficiency. Scr Mater 61(4):415–418.  https://doi.org/10.1016/j.scriptamat.2009.04.034 CrossRefGoogle Scholar
  45. 45.
    Chen J, Gong X, Lin Y et al (2010) Synthesis and spectral property of Pr3+-doped tungstate deep red phosphors. J Alloys Compd 492(1-2):667–670.  https://doi.org/10.1016/j.jallcom.2009.12.009 CrossRefGoogle Scholar
  46. 46.
    Terebilenko KV, Zatovsky IV, Slobodyanik NS et al (2007) Phase relations in the system K2MoO4–KPO3–MoO3–Bi2O3: a new phosphate K3Bi5(PO4)6. J Solid State Chem 180(12):3351–3359.  https://doi.org/10.1016/j.jssc.2007.10.001 ADSCrossRefGoogle Scholar
  47. 47.
    Becker P (2003) Thermal and optical properties of glasses of the system Bi2O3–B2O3. Cryst Res Technol 38(1):74–82.  https://doi.org/10.1002/crat.200310009 CrossRefGoogle Scholar
  48. 48.
    Gorodylova NA, Baumer VN, Zatovsky IV et al (2011) Crystallization from high-temperature solutions in the K2O-P2O5-V2O5-Bi2O3 system. Inorg Mater 47(2):156–162.  https://doi.org/10.1016/j.jssc.2007.10.001 CrossRefGoogle Scholar
  49. 49.
    Terebilenko KV, Zatovsky IV, Baumer VN et al (2008) Phase relations in the K2W2O7–K2WO4–KPO3–Bi2O3 system and structure of K6.5Bi2.5W4P6O34. J Solid State Chem 181(9):2393–2400.  https://doi.org/10.1016/j.jssc.2008.05.035 ADSCrossRefGoogle Scholar
  50. 50.
    Umar A, Ahmad R, Kumar R et al (2016) Bi2O2CO3 nanoplates: fabrication and characterization of highly sensitive and selective cholesterol biosensor. J Alloys Compd 683:433–438.  https://doi.org/10.1016/j.jallcom.2016.05.063 CrossRefGoogle Scholar
  51. 51.
    Chen Q, Wang Y, Wang H (2018) Synthesis and properties of nanocrystal BiPO4 in diamagnetic PbO-Bi2O3-B2O3 glass. J Non-Cryst Solids 481:85–93.  https://doi.org/10.1016/j.jnoncrysol.2017.10.025 ADSCrossRefGoogle Scholar
  52. 52.
    Zhong J, Weiren Z, Licai L, Jianqing W (2014) Hydrothermal synthesis and luminescence properties of Eu3+ and Sm3+ codoped BiPO4. J Rare Earths 32(1):5–11.  https://doi.org/10.1016/S1002-0721(14)60026-0 CrossRefGoogle Scholar
  53. 53.
    Schultze D (1988) Thermal synthesis of non-stoichiometric Bi5.8PO11.2. J Therm Anal Calorim 33(3):895–901.  https://doi.org/10.1007/BF02138606 CrossRefGoogle Scholar
  54. 54.
    Schultze D, Uecker R (1985) Thermoanalytical and single crystal growth investigations in the system Bi2O5-P2O5 and Bi2O3-Nd2O3-P2O5. Thermochim Acta 93:509–512.  https://doi.org/10.1016/0040-6031(85)85128-5 CrossRefGoogle Scholar
  55. 55.
    Wang Y, Guan X, Li L, Li G (2012) pH-driven hydrothermal synthesis and formation mechanism of all BiPO4 polymorphs. CrystEngComm 14(23):7907–7914.  https://doi.org/10.1039/C2CE25337B CrossRefGoogle Scholar
  56. 56.
    Zhang Y, Sillanpää M, Obregón S, Colón G (2015) A novel two-steps solvothermal synthesis of nanosized BiPO4 with enhanced photocatalytic activity. J Mol Catal A Chem 402:92–99.  https://doi.org/10.1016/j.molcata.2015.03.011 CrossRefGoogle Scholar
  57. 57.
    Liu Y, Sun M, Liu Y et al (2015) Effects of aging time on phase, morphology, and luminescence by two-photon processes of BiPO4:Er3+,Yb3+ in the solvothermal synthesis. Opt Mater 45:32–36.  https://doi.org/10.1016/j.optmat.2015.03.004 ADSCrossRefGoogle Scholar
  58. 58.
    Xie J, Cao Y, Jia W et al (2018) Solvent-free strategy of photocarriers accumulated site and separated path for porous hollow spindle-shaped BiPO4. ChemCatChem 10(17):3777–3785.  https://doi.org/10.1002/cctc.201800750 CrossRefGoogle Scholar
  59. 59.
    Zhu Y, Ling Q, Liu Y et al (2016) Photocatalytic performance of BiPO4 nanorods adjusted via defects. Appl Catal B Environ 187:204–211.  https://doi.org/10.1016/j.apcatb.2016.01.012 CrossRefGoogle Scholar
  60. 60.
    Yang M, Shrestha NK, Hahn R, Schmuki P (2010) Electrochemical formation of bismuth phosphate nanorods by anodization of bismuth. Electrochem Solid-State Lett 13(4):C5–C8.  https://doi.org/10.1149/1.3290775 CrossRefGoogle Scholar
  61. 61.
    Wang Q, Li Y, Zeng Z, Pang S (2012) Relationship between crystal structure and luminescent properties of novel red emissive BiVO4:Eu3+ and its photocatalytic performance. J Nanopart Res 14(8):1076.  https://doi.org/10.1007/s11051-012-1076-1 CrossRefGoogle Scholar
  62. 62.
    Zhao M, Li L, Zheng J et al (2012) Is BiPO4 a better luminescent host? Case study on doping and annealing effects. Inorg Chem 52(2):807–815.  https://doi.org/10.1021/ic3019315 CrossRefGoogle Scholar
  63. 63.
    Fu C, Li G, Zhao M et al (2012) Solvent-driven room-temperature synthesis of nanoparticles BiPO4:Eu3+. Inorg Chem 51(10):5869–5880.  https://doi.org/10.1021/ic300465r CrossRefGoogle Scholar
  64. 64.
    Zhao M, Li G, Zheng J et al (2011) Preparation and polymorph-sensitive luminescence properties of BiPO4:Eu, part I: room-temperature reaction followed by a heat treatment. CrystEngComm 13(20):6251–6257.  https://doi.org/10.1039/C1CE05629H CrossRefGoogle Scholar
  65. 65.
    Sun X, Sun X, He J et al (2014) Synthesis and luminescence of BiPO4:xEu3+ powders by solid state reaction method. Ceram Int 40(5):7647–7650.  https://doi.org/10.1016/j.ceramint.2013.12.095 MathSciNetCrossRefGoogle Scholar
  66. 66.
    Mooney-Slater RC (1962) Polymorphic forms of bismuth phosphate. Z Kristallogr 117(1-6):371–385.  https://doi.org/10.1524/zkri.1962.117.16.371 CrossRefGoogle Scholar
  67. 67.
    Romero B, Bruque S, Aranda MA, Iglesias JE (1994) Syntheses, crystal structures, and characterization of bismuth phosphates. Inorg Chem 33(9):1869–1874.  https://doi.org/10.1021/ic00087a023 CrossRefGoogle Scholar
  68. 68.
    Masse R, Durif A (1985) Etude structurale de la forme haute température du monophosphate de bismuth BiPO4. C R Acad Sci 300(17):849–851Google Scholar
  69. 69.
    Errandonea D, Gomis O, Santamaría-Perez D et al (2015) Exploring the high-pressure behavior of the three known polymorphs of BiPO4: discovery of a new polymorph. J Appl Phys 117(10):105902.  https://doi.org/10.1063/1.4914407 ADSCrossRefGoogle Scholar
  70. 70.
    Achary SN, Errandonea D, Muñoz A et al (2013) Experimental and theoretical investigations on the polymorphism and metastability of BiPO4. Dalton Trans 42(42):14999–15015.  https://doi.org/10.1039/c3dt51823j CrossRefGoogle Scholar
  71. 71.
    Zheng Y, Li L, Zhao M et al (2014) Enhancement of thermal stability in bismuth phosphate by Ln3+ doping for tailored luminescence properties. CrystEngComm 16(23):5040–5049.  https://doi.org/10.1039/C3CE41960F CrossRefGoogle Scholar
  72. 72.
    Horchani-Naifer K, Férid M (2009) Crystal structure, energy band and optical characterizations of praseodymium monophosphate PrPO4. Inorg Chim Acta 362(6):1793–1796.  https://doi.org/10.1016/j.ica.2008.08.021 CrossRefGoogle Scholar
  73. 73.
    Long B, Huang J, Wang X (2012) Photocatalytic degradation of benzene in gas phase by nanostructured BiPO4 catalysts. Prog Nat Sci-Mater 22(6):644–653.  https://doi.org/10.1016/j.pnsc.2012.11.007 CrossRefGoogle Scholar
  74. 74.
    Blaha P, Schwarz K, Madsen G et al (2001) WIEN2k, an augmented plane wave local orbitals program for calculating crystal properties. Techn. Universitadt Wien, Karlheinz Schwarz, Austria. ISBN 3-9501031-1-2Google Scholar
  75. 75.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(23):13244.  https://doi.org/10.1103/PhysRevB.45.13244 ADSCrossRefGoogle Scholar
  76. 76.
    Pan C, Zhu Y (2015) A review of BiPO4, a highly efficient oxyacid-type photocatalyst, used for environmental applications. Cat Sci Technol 5(6):3071–3083.  https://doi.org/10.1039/C5CY00202H CrossRefGoogle Scholar
  77. 77.
    Hizhnyi Y, Nedilko SG, Chornii V et al (2013) Electronic structure and luminescence spectroscopy of M’Bi(MoO4)2 (M’= Li, Na, K), LiY(MoO4)2 and NaFe (MoO4)2 molybdates. Solid State Phenom 200:114–122.  https://doi.org/10.4028/www.scientific.net/SSP.200.114 CrossRefGoogle Scholar
  78. 78.
    Spassky DA, Vasil’ev AN, Kamenskikh IA et al (2011) Electronic structure and luminescence mechanisms in ZnMoO4 crystals. J Phys Condens Matter 23(36):365501.  https://doi.org/10.1088/0953-8984/23/36/365501 ADSCrossRefGoogle Scholar
  79. 79.
    Pan C, Li D, Ma X et al (2011) Effects of distortion of PO4 tetrahedron on the photocatalytic performances of BiPO4. Cat Sci Technol 1(8):1399–1405.  https://doi.org/10.1039/C1CY00261A CrossRefGoogle Scholar
  80. 80.
    Nedilko S, Chornii V, Hizhnyi Y et al (2013) Luminescence spectroscopy and electronic structure of Eu3+-doped Bi-containing oxide compounds. Funct Mater 20(1):29–36.  https://doi.org/10.15407/fm20.01.029 CrossRefGoogle Scholar
  81. 81.
    Liang YL, Zhang W, Hu ZF et al (2014) Effect of Eu3+ on microstructure and luminescence properties of BiPO4 for near-UV LED. Appl Mech Mater 543(547):3745–3749.  https://doi.org/10.4028/www.scientific.net/AMM.543-547.3745 CrossRefGoogle Scholar
  82. 82.
    Cybinska J, Lorbeer C, Mudring AV (2016) Ionic liquid assisted microwave synthesis route towards color-tunable luminescence of lanthanide-doped BiPO4. J Lumin 170:641–647.  https://doi.org/10.1016/j.jlumin.2015.06.051 CrossRefGoogle Scholar
  83. 83.
    Yan SQ, Long CG (2016) Effects of Sm3+ concentration on the microstructure and luminescence properties of BiPO4 phosphor prepared by hydrothermal method. J Mater Sci Mater Electron 27(11):12079–12084.  https://doi.org/10.1007/s10854-016-5357-9 CrossRefGoogle Scholar
  84. 84.
    Wang Y, Huang H, Quan C, Tian N, Zhang Y (2016) Hydrothermal fabrication of multi-functional Eu3+ and Tb3+ co-doped BiPO4: photocatalytic activity and tunable luminescence properties. J Cryst Growth 433:1–6.  https://doi.org/10.1016/j.jcrysgro.2015.09.031 ADSCrossRefGoogle Scholar
  85. 85.
    Zhong J, Zhao W, Song E, Deng Y (2014) Luminescence properties and dynamical processes of energy transfer in BiPO4:Tb3+, Eu3+ phosphor. J Lumin 154:204–210.  https://doi.org/10.1016/j.jlumin.2014.04.031 CrossRefGoogle Scholar
  86. 86.
    De Sousa DF, Batalioto F, Bell MJV et al (2001) Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses. J Appl Phys 90(7):3308–3313.  https://doi.org/10.1063/1.1397289 ADSCrossRefGoogle Scholar
  87. 87.
    Ni Y, Hughes JM, Mariano AN (1995) Crystal chemistry of the monazite and xenotime structures. Am Mineral 80(1-2):21–26.  https://doi.org/10.2138/am-1995-1-203 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • V. Chornii
    • 1
    • 2
  • V. Boyko
    • 1
  • S. G. Nedilko
    • 2
    Email author
  • M. Slobodyanik
    • 2
  • K. Terebilenko
    • 2
  1. 1.National University of Life and Environmental Sciences of UkraineKyivUkraine
  2. 2.Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations