Advertisement

The Regularities of Sorption of Substances of Different Nature by pH-Sensitive Acrylic Hydrogels for Plant Nanofertilizer Formation

  • K. V. Kalinichenko
  • G. N. Nikovskaya
  • V. O. Oliinyk
  • Yu. M. Samchenko
  • Z. R. Ulberg
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)

Abstract

At present, great attention is focused on learning about the interaction of pH-sensitive acrylic hydrogels with external medium and its influence on their properties. The synthetic polymeric hydrogels — acrylamide and acrylic acid copolymer (AA-AA), acrylamide and acrylonitrile copolymer (AA-AN), polyacrylamide hydrogel (PAAG) — were used in the study. The acrylic hydrogels are able to sorb substances of different nature. According to their affinity to the polymeric gels, they have the sequence: organic stain (positively and negatively charged) > Fe3+ > Cu2+ > Mn2+ > MnO4 > (Cu-Humate) > (Fe-Humate) > H2PO4. Overall, the degree of their desorption has the opposite order. This points out that compounds of different nature are quite firmly held in the hydrogel matrix and only partially desorbed into the environment. The swelling of the pH-sensitive gels is observed simultaneously with sorbate sorption at alkaline pH values. Collapse of the hydrogels and desorption of the sorbed substances takes place in acidic medium. The results obtained may be considered as an experimental base for a formation of plant nanofertilizer of prolonged action.

References

  1. 1.
    Kokabia M, Sirousazarb M, Hassan ZM (2007) PVA–clay nanocomposite hydrogels for wound dressing. Eur Polym J 43(3):773–781CrossRefGoogle Scholar
  2. 2.
    Haraguchi K, Takehisa K (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14(16):1120–1124CrossRefGoogle Scholar
  3. 3.
    Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287(1):1–11CrossRefGoogle Scholar
  4. 4.
    Gaharwar AK, Peppas NA, Khademhosseini A (2013) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111(3):441–453CrossRefGoogle Scholar
  5. 5.
    Haraguchi K (2007) Nanocomposite hydrogels. Curr Opinion Solid State Mater Sci 11(3–4):47–54ADSCrossRefGoogle Scholar
  6. 6.
    Satarkar NS, Hilt JZ (2008) Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomater 4(1):11–16CrossRefGoogle Scholar
  7. 7.
    Jilie K, Li M (2007) Smart hydrogels. In: Galaev I, Mattiasson B (eds) Smart polymers: applications in biotechnology and biomedicine. CRC Press, Boca Raton, pp 247–268Google Scholar
  8. 8.
    Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32(04):314–322CrossRefGoogle Scholar
  9. 9.
    Samchenko Y, Ulberg Z, Korotych O (2011) Multipurpose smart hydrogel systems. Adv Colloid Interf Sci 168(1–2):247–262CrossRefGoogle Scholar
  10. 10.
    Luchini A, Geho DH, Bishop B, Tran D, Xia C, Dufour RL, Liotta LA (2008) Smart hydrogel particles: biomarker harvesting: one-step affinity purification, size exclusion, and protection against degradation. Nano Lett 8(1):350–361ADSCrossRefGoogle Scholar
  11. 11.
    Roy S, Banerjee A (2011) Amino acid based smart hydrogel: formation, characterization and fluorescence properties of silver nanoclusters within the hydrogel matrix. Soft Matter 7(11):5300–5308ADSCrossRefGoogle Scholar
  12. 12.
    Zhou X, Hon YC, Sun S, Mak AFT (2002) Numerical simulation of the steady-state deformation of a smart hydrogel under an external electric field. Smart Mater Struct 11(3):459–467ADSCrossRefGoogle Scholar
  13. 13.
    Li H (2009) Smart hydrogel modeling. Springer Verlag, HeidelbergCrossRefGoogle Scholar
  14. 14.
    Rudzinski WE, Chipuk T, Dave AM, Kumbar SG, Aminabhavi TM (2002) pH-sensitive acrylic-based copolymeric hydrogels for the controlled release of a pesticide and a micronutrient. J Appl Polym Sci 87(3):394–403CrossRefGoogle Scholar
  15. 15.
    Gemeinhart RA, Chen J, Park H, Park K (2000) pH-sensitivity of fast responsive superporous hydrogels. J Biomater Sci Polym Ed 11(12):1371–1380CrossRefGoogle Scholar
  16. 16.
    Demitri C, Scalera F, Madaghiele M, Sannino A, Maffezzoli A (2013) Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int J Polym Sci 3:1–6CrossRefGoogle Scholar
  17. 17.
    Wang W, Wang A (2010) Nanocomposite of carboxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: synthesis, characterization and properties. Carbohydr Polym 82(1):83–91CrossRefGoogle Scholar
  18. 18.
    Zwieniecki MA (2001) Hydrogel control of xylem hydraulic resistance in plants. Science 291(5506):1059–1062ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • K. V. Kalinichenko
    • 1
  • G. N. Nikovskaya
    • 1
  • V. O. Oliinyk
    • 2
  • Yu. M. Samchenko
    • 3
  • Z. R. Ulberg
    • 1
  1. 1.Colloidal Technologies of the Natural Systems Department, F.D. Ovcharenko Institute of Biocolloidal Chemistry, National Academy of Sciences of UkraineKievUkraine
  2. 2.Department of Physical and Chemical GeomechanicsF. D. Ovcharenko Institute of Biocolloidal Chemistry, National Academy of Sciences of UkraineKievUkraine
  3. 3.Department of Functional HydrogelF.D. Ovcharenko Institute of Biocolloidal Chemistry, National Academy of Sciences of UkraineKievUkraine

Personalised recommendations