Advertisement

Nanoporous Biochar for Removal of Toxic Organic Compounds from Water

  • Yuliya S. Dzyazko
  • Olexii V. Palchik
  • Vladimir M. Ogenko
  • Leon Y. Shtemberg
  • Valerii I. Bogomaz
  • Sergii A. Protsenko
  • Vladimir G. Khomenko
  • Irina S. Makeeva
  • Oxana V. Chernysh
  • Olexander G. Dzyazko
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)

Abstract

The samples of biochar have been synthesized by chemical carbonization of disaccharide (lactose) and polysaccharide (dextrin). The method excludes thermal treatment under high temperature. Porous structure of the low-cost adsorbents involves nanosized mesopores, a radius of which is 2 nm. They contribute to specific surface area and provide adsorption of large organic molecules, such as dyes and pesticides. The adsorbent produced from the polysaccharide is characterized by higher amount of functional groups comparing with that obtained from the disaccharide. The specific capacitance of a condenser, which involves the carbon electrodes, reaches 0.026 (lactose) and 0.072 F m−2. The degree of removal of toxic organic compounds from water is above 99%. In the case of epoxiconazole and carboxin, it is possible to decrease their content in water down to the maximal allowable concentration. Adsorption capacity was estimated as 79 and 120 mg g−1, respectively.

Keywords

Nanopores Biochar Nanosized organic molecules Adsorption Electrode capacitance 

Notes

Acknowledgments

The work was performed within the framework of the project entitled “Developments of materials and processes for removal of valuable and toxic components from the solutions of biogenic and technogenic origin” supported by the NAS of Ukraine.

References

  1. 1.
    Carami N, Clemente R, Moreno-Jimenez E et al (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191(1–3):41–48CrossRefGoogle Scholar
  2. 2.
    Xu N, Tan G, Wang H et al (2016) Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur J Soil Biol 74:1–8CrossRefGoogle Scholar
  3. 3.
    Mohan D, Sarswat A, Ok YS et al (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review. Bioresour Technol 160:191–202CrossRefGoogle Scholar
  4. 4.
    Liu Z, Quek A, Hoekman SK et al (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–949CrossRefGoogle Scholar
  5. 5.
    Qian K, Kumar A, Zhang H (2015) Recent advances in utilization of biochar. Renew Sust Energ Rev 42:1055–1064CrossRefGoogle Scholar
  6. 6.
    Nunes LJR, Oliveira Matias JC, Silva Catalao JP (2017) Torrefaction of biomass for energy applications. Academic Press, London/San-Diego/Cambridge/OxfordGoogle Scholar
  7. 7.
    Zhu N, Yan T, Qiao J et al (2016) Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: adsorption mechanism and depleted adsorbent utilization. Chemosphere 164:32–40ADSCrossRefGoogle Scholar
  8. 8.
    Fang C, Zhang T, Li P (2014) Application of magnesium modified corn biochar for phosphorus removal and recovery from swine wastewater. Int J Environ Res Public Health 11(9):9217–9237CrossRefGoogle Scholar
  9. 9.
    Taghizadeh-Toosi A, Clough TJ, Sherlock RR et al (2012) Biochar adsorbed ammonia is bioavailable. Plant Soil 350(1–2):57–69CrossRefGoogle Scholar
  10. 10.
    Chen X, Chen G, Chen L (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102(19):8877–8884CrossRefGoogle Scholar
  11. 11.
    Kameyama K, Miyamoto T, Iwata Y et al (2016) Influences of feedstock and pyrolysis temperature on the nitrate adsorption of biochar. Soil Sci Plant Nutr 62(2):180–184CrossRefGoogle Scholar
  12. 12.
    Fan S, Wang Y, Wang Z et al (2017) Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism. J Environ Chem Eng 5(1):601–611CrossRefGoogle Scholar
  13. 13.
    Leng L, Yuan X, Huang H et al (2015) Bio-char derived from sewage sludge by liquefaction: characterization and application for dye adsorption. Appl Surf Sci 346:223–231ADSCrossRefGoogle Scholar
  14. 14.
    Sewu D, Boakye P, Jung H et al (2017) Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica. Bioresour Technol 244(1):1142–1149CrossRefGoogle Scholar
  15. 15.
    Xiao L, Bi E, Du B et al (2014) Surface characterization of maize-straw-derived biochars and their sorption performance for MTBE and benzen. Environ Earth Sci 71(12):5195–5205CrossRefGoogle Scholar
  16. 16.
    Chen B, Zhou D, Zhu L et al (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42(14):5137–5143ADSCrossRefGoogle Scholar
  17. 17.
    Li G, Zhu W, Zhu L et al (2016) Effect of pyrolytic temperature on the adsorptive removal of p-benzoquinone, tetracycline, and polyvinyl alcohol by the biochars from sugarcane bagasse. Korean J Chem Eng 33(7):2215–2221CrossRefGoogle Scholar
  18. 18.
    XF T, YG L, YL G et al (2016) Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresour Technol 212:318–333CrossRefGoogle Scholar
  19. 19.
    Reddy DHK, Lee S-M (2014) Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids Surf A: Physicochem Eng Asp 454:96–103CrossRefGoogle Scholar
  20. 20.
    Zhang M, Gao B, Varnoosfaderani S et al (2013) Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol 130:457–462CrossRefGoogle Scholar
  21. 21.
    Yu Z, Zhou L, Huang Y et al (2015) Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil. J Environ Manag 163:155–162CrossRefGoogle Scholar
  22. 22.
    Li R, Wang JJ, Zhou B et al (2016) Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios. Sci Total Environ 559:121–129ADSCrossRefGoogle Scholar
  23. 23.
    Tang J, Lv H, Gong Y (2015) Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal. Bioresour Technol 196:355–363CrossRefGoogle Scholar
  24. 24.
    Zhang M, Gao B, Yao Y (2012) Synthesis, characterization, and environmental implications of graphene-coated biochar. Sci Total Environ 435–436:567–572ADSCrossRefGoogle Scholar
  25. 25.
    Betts AR, Chen N, Hamilton JG et al (2013) Rates and mechanisms of Zn2+ adsorption on a meat and bonemeal biochar. Environ Sci Technol 47(24):14350–14357ADSCrossRefGoogle Scholar
  26. 26.
    Dzyazko YS, Trachevskii VV, Rozhdestvenskaya LM et al (2013) Interaction of sorbed Ni(II) ions with amorphous zirconium hydrogen phosphate. Russ J Phys Chem A 87(5):840–845CrossRefGoogle Scholar
  27. 27.
    Ueno M, Kawamiysu Y, Komita Y et al (2007) Carbonization and classification of bagasse for effective utilization of sugarcane biomass. Proc Int Soc Sugar Cane Technol 26:1194–1201Google Scholar
  28. 28.
    Altundogan NS, Bahar N, Mujde B (2007) The use of sulfuric acid-carbonization products of sugar beet pulp in Cr(VI) removal. J Hazard Mater 144:255–264CrossRefGoogle Scholar
  29. 29.
    Ozer A, Tanyildizi MS, Tumen F (1998) Study of cadmium adsorption form aqueous solution in activated carbon from sugar beet pulp. Environ Technol 19:1119–1125CrossRefGoogle Scholar
  30. 30.
    Ozer A, Tumen F (2005) Cu(II) adsorption from aqueous solutions on sugar beet pulp. Eur J Miner Process Environ Prot 5(1):26–34Google Scholar
  31. 31.
    Cao X, Ro KS, Libra JA et al (2013) Effects of biomass types and carbonization conditions on the chemical characteristics of hydrochars. J Agric Food Chem 61:9401–9411CrossRefGoogle Scholar
  32. 32.
    Hu B, Wang K, Wu L et al (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:1–16CrossRefGoogle Scholar
  33. 33.
    Buasri A, Pholprasert C, Suwunnakee N et al (2013) Effects of carbonization temperature and nanoporous silica templating on the synthesis of porous carbon from commercial sugar. Adv Mater Res 650:113–118CrossRefGoogle Scholar
  34. 34.
    Myronyuk IF, Mandzyuk VI, Sachko VM et al (2016) Structural features of carbons produced using glucose, lactose, and saccharose. Nanoscale Res Lett 11:508.  https://doi.org/10.1186/s11671-016-1723-z ADSCrossRefGoogle Scholar
  35. 35.
    Nosach LV, Voronin EF, Pakhlov EM et al (2016) Nano-particulate structures with glucose-derived char and compacted fumed silica in gaseous and aqueous media. Springer Proc Phys 195:729–742CrossRefGoogle Scholar
  36. 36.
    Fiori L, Basso D, Castello D et al (2014) Hydrothermal carbonization of biomass: design of a batch reactor and preliminary experimental results. Chem Eng Trans 37:55–60Google Scholar
  37. 37.
    Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15–16):2483–2498CrossRefGoogle Scholar
  38. 38.
    Vol’fkovich YM, Serdyuk TM (2002) Electrochemical capacitors. Electrokhimiya 38(9):1043–1068Google Scholar
  39. 39.
    Gregg SJ, Sing KSW (1991) Adsorption, surface area and porosity. Academic Press, LondonGoogle Scholar
  40. 40.
    Volfkovich YM, Bograchev DA, Mikhalin AA et al (2018) Electrodes based on carbon nanomaterials: structure, properties, and application to capacitive deionization in static cells. Springer Proc Phys 210:127–146CrossRefGoogle Scholar
  41. 41.
    Volfkovich YM, Mazin VM, Urisson NA (1998) Operation of double-layer capacitors based on carbon materials. Russ J Electrochem 34(8):740–746Google Scholar
  42. 42.
    Volfkovich YM, Bograchev DA, Mikhalin AA et al (2017) Capacitive deionization of aqueous solutions: modeling and experiments. Desalin Water Treat 69:130–141CrossRefGoogle Scholar
  43. 43.
    Nakanishi K (1960) Infrared absorption spectroscopy. Nankodo, TokyoGoogle Scholar
  44. 44.
    Sracy WO, Vastola FJ, Walker PL (1968) Interaction of sulfur dioxide with active carbon. Carbon 6:917–923CrossRefGoogle Scholar
  45. 45.
    Namasivayam C, Kavitha D (2002) Removal of Congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigments 54:47–58CrossRefGoogle Scholar
  46. 46.
    Ponomarova L, Dzyazko Y, Volfkovich Y, Sosenkin V, Scherbakov S (2018) Effect of incorporated inorganic nanoparticles on porous structure and functional properties of strongly and weakly acidic ion exchangers. Springer Proc Phys 214:63–77CrossRefGoogle Scholar
  47. 47.
    Dzyazko YS, Ponomareva LN, Volfkovich YM et al (2012) Effect of the porous structure of polymer on the kinetics of Ni2+ exchange on hybrid inorganic-organic ionites. Russ J Phys Chem A 86(6):913–919CrossRefGoogle Scholar
  48. 48.
    Dzyazko YS, Rozhdestvenska LM, Vasilyuk SL et al (2017) Composite membranes containing nanoparticles of inorganic ion exchangers for electrodialytic desalination of glycerol. Nanoscale Res Lett 12:438.  https://doi.org/10.1186/s11671-017-2208-4 ADSCrossRefGoogle Scholar
  49. 49.
    Myronchuk VG, Dzyazko YS, Zmievskii YG et al (2016) Organic-inorganic membranes for filtration of corn distillery. Acta Periodica Technologica 47:153–165CrossRefGoogle Scholar
  50. 50.
    Dzyazko YS, Rozhdestvenskaya LM, Zmievskii YG et al (2015) Organic-inorganic materials containing nanoparticles of zirconium hydrophosphate for baromembrane separation. Nanoscale Res Lett 10:64.  https://doi.org/10.1186/s11671-015-0758-x ADSCrossRefGoogle Scholar
  51. 51.
    Zmievskii Y, Rozhdestvenska L, Dzyazko Y et al (2017) Organic-inorganic materials for baromembrane separation. Springer Proc Phys 195:675–686CrossRefGoogle Scholar
  52. 52.
    Dzyazko YS, Volfkovich YM, Sosenkin VE et al (2014) Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation. Nanoscale Res Lett 9(1):271.  https://doi.org/10.1186/1556-276X-9-271 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yuliya S. Dzyazko
    • 1
  • Olexii V. Palchik
    • 1
  • Vladimir M. Ogenko
    • 1
  • Leon Y. Shtemberg
    • 2
  • Valerii I. Bogomaz
    • 3
  • Sergii A. Protsenko
    • 2
  • Vladimir G. Khomenko
    • 4
  • Irina S. Makeeva
    • 4
  • Oxana V. Chernysh
    • 4
  • Olexander G. Dzyazko
    • 5
  1. 1.VI Vernadskii Institute of General and Inorganic Chemistry of the National Academy of Science of UkraineKyivUkraine
  2. 2.Crop Care InstituteCherkasyUkraine
  3. 3.“Ukravit” Agro LTDKyivUkraine
  4. 4.Kyiv National University of Technologies and DesignKyivUkraine
  5. 5.Taras Shevchenko Natiional University of KyivKyivUkraine

Personalised recommendations