Advertisement

Magnetic Resonance Nanotherapy for Malignant Tumors

  • V. Orel
  • A. Shevchenko
  • T. Golovko
  • O. Ganich
  • O. Rihalsky
  • I. Orel
  • A. Burlaka
  • S. Lukin
  • V. Kotovsky
  • V. Dunaevsky
  • S. Nazarchuk
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)

Abstract

Magnetic resonance effect can induce double-strand breaks in DNA through induction of reactive oxygen species by the electromagnetic field. The aim of this paper is to study the possible use of the magnetic resonance effect for magnetic nanotherapy of Lewis lung carcinoma. The study was carried out on 40 C57Bl/6 mice bearing Lewis lung carcinoma. Animals were divided into four groups: (1) control (without treatment); (2) сonventional doxorubicin (DOXO) (Pfizer) administration; (3) administration of a mechano-magneto-chemically synthesized nanocomplex (MMCS) comprising ferromagnetic commercial nanoparticles <50 nm (Sigma-Aldrich) and paramagnetic DOXO; and (4) administration of the MMCS nanocomplex with following whole-body electromagnetic irradiation (EI) produced by a magnetic resonance tomography (MRT) system Intera 1.5T (Philips Medical Systems) in animals. Magnetic resonance imaging of magnetic nanocomplex (MNC) had slightly greater heterogeneity due to the presence of iron oxide nanoparticles. The combination therapy of MNC and EI by MRT had maximal antitumor effect and minimal of the average number of lung metastatic foci per mouse. The temperature inside the tumor reached 37°С. Electron spin resonance signal of Lewis lung carcinoma with g-factor of 2.25–2.42 indicating the presence of P-450 cytochrome was not detected among all investigated groups. This suggests the violation in electron transfer regulation of mitochondrial electron transport chain of tumor cells during anticancer therapy. The proposed hypothetical model of MNC action for magnetic nanotherapy is based on the well-known fact that various parameters of the external magnetic field can switch spin-controlled states of free radical pairs and modulate redox reactions in tumor and normal tissues.

References

  1. 1.
    Gobbo OL, Sjaastad K, Radomski MW et al (2015) Magnetic nanoparticles in cancer theranostics. Theranostics 5:1249–1263.  https://doi.org/10.7150/thno.11544 CrossRefGoogle Scholar
  2. 2.
    Maier-Hauff K, Ulrich F, Nestler D et al (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103:317–324.  https://doi.org/10.1007/s11060-010-0389-0 CrossRefGoogle Scholar
  3. 3.
    Winter L, Oezerdem C, Hoffmann W et al (2015) Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1 GHz). Radiat Oncol 10:201.  https://doi.org/10.1186/s13014-015-0510-9 CrossRefGoogle Scholar
  4. 4.
    Limbach LK, Wick P, Manser P et al (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163.  https://doi.org/10.1021/es062629t ADSCrossRefGoogle Scholar
  5. 5.
    Thomas R, Park IK, Jeong YY (2013) Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci 14:15910–15930.  https://doi.org/10.3390/ijms140815910 CrossRefGoogle Scholar
  6. 6.
    Gworth WH, Todd CJ, Bell MI et al (2000) The diagnostic and therapeutic impact of MRI: an observational multicenter study. Clin Radiol 55:825–831CrossRefGoogle Scholar
  7. 7.
    Emanuel N (1982) Kinetics of experimental tumor processes. Pergamon Press, OxfordGoogle Scholar
  8. 8.
    Jaffer H, Murphy KJ (2017) Magnetic resonance imaging-induced DNA damage. Can Assoc Radiol J 68:2–3.  https://doi.org/10.1016/j.carj.2016.12.004 CrossRefGoogle Scholar
  9. 9.
    Orel VE, Shevchenko AD, Rykhalskiy AY et al (2015) Investigation of nonlinear magnetic properties magneto-mechano-chemical synthesized nanocomplex from magnetite and antitumor antibiotic doxorubicin. In: Fesenko O, Yatsenko L (eds) Springer proceedings in physics: nanocomposites, nanophotonics, nanobiotechnology and applications, vol 156. Springer Proceeding in Physics, Cham, pp 103–110.  https://doi.org/10.13140/2.1.4251.2643 CrossRefGoogle Scholar
  10. 10.
    Matsuzaki T, Yokokura T (1987) Inhibition of tumor metastasis of Lewis lung carcinoma in C57BL/6 mice by intrapleural administration of Lactobacillus casei. Cancer Immunol Immunother 25:100–104.  https://doi.org/10.1007/BF00199948 CrossRefGoogle Scholar
  11. 11.
    Li H, Calder CA, Cressie N (2007) Beyond Moran’s I: testing for spatial dependence based on the spatial autoregressive model. Geogr Anal 39:357–375.  https://doi.org/10.1111/j.1538-4632.2007.00708.x CrossRefGoogle Scholar
  12. 12.
    Shellock FG (2000) Radiofrequency energy-induced heating during MR procedures: a review. J Magn Reson Imaging 12:30–36.  https://doi.org/10.1002/1522-2586(200007)12:1<30::AID-JMRI4>3.0.CO;2-S CrossRefGoogle Scholar
  13. 13.
    Nicholls DG, Ferguson SJ (2002) Bioenergetics 3. Academic Press, LondonGoogle Scholar
  14. 14.
    Nelson DL, Cox MM (2008) Lehninger principles of biochemistry, 5th edn. W.H. Freeman and Company, New YorkGoogle Scholar
  15. 15.
    Woodward JR, Jackson RJ, Timmel CR et al (1997) Resonant radiofrequency magnetic field effects on a chemical reaction. Chem Phys Lett 272:376–382.  https://doi.org/10.1016/S0009-2614(97)00542-3 ADSCrossRefGoogle Scholar
  16. 16.
    Orel V, Tselepi M, Mitrelias T et al (2018) Nanomagnetic modulation of tumor redox state. Nanomedicine 14:1249–1256.  https://doi.org/10.1016/j.nano.2018.03.002 CrossRefGoogle Scholar
  17. 17.
    Barnes FS, Greenebaum B (2015) The effects of weak magnetic fields on radical pairs. Bioelectromagnetics 36:45–54.  https://doi.org/10.1002/bem.21883 CrossRefGoogle Scholar
  18. 18.
    Chen Y, Zhang H, Zhou HJ et al (2016) Mitochondrial redox signaling and tumor progression. Cancers (Basel) 8:40.  https://doi.org/10.3390/cancers8040040 CrossRefGoogle Scholar
  19. 19.
    Sensenig R, Sapir Y, MacDonald C et al (2012) Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomed (Lond) 7:1425–1442.  https://doi.org/10.2217/nnm.12.109 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • V. Orel
    • 1
    • 2
  • A. Shevchenko
    • 3
  • T. Golovko
    • 1
  • O. Ganich
    • 1
  • O. Rihalsky
    • 1
  • I. Orel
    • 1
  • A. Burlaka
    • 4
  • S. Lukin
    • 4
    • 5
  • V. Kotovsky
    • 2
  • V. Dunaevsky
    • 5
  • S. Nazarchuk
    • 2
  1. 1.National Cancer InstituteKyivUkraine
  2. 2.National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine
  3. 3.G. V. Kurdyumov Institute for Metal Physics, National Academy of Science of UkraineKyivUkraine
  4. 4.R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Science of UkraineKyivUkraine
  5. 5.V.Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of UkraineKyivUkraine

Personalised recommendations