Advertisement

Theory of Exciton States in Nanosystems Containing Dielectric Quantum Dots

  • Sergey I. Pokutnyi
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)

Abstract

It is shown that in the potential energy of an exciton of spatially separated electrons and holes (hole moves in the amount of quantum dots (QDs), and the electron is localized on a spherical surface section (QD - dielectric matrix)) taking into account centrifugal energy gives rise band of the quasi-stationary surface exciton states that with the increase of the radius of QD becomes stationary state. The mechanisms of formation of the spectra of interband and intraband absorption (emission) of light in nanosystems containing aluminum oxide QDs, placed in the matrix of vacuum oil, are presented. It is shown that the electron transitions in the area of the surface exciton states cause significant absorption in the visible and near infrared wavelengths, and cause the experimentally observed significant blurring of the absorption edge.

Keywords

exciton of spatially separated electrons and holes quasi-stationary and stationary states quantum dots 

References

  1. 1.
    Grabovskis V, Dzenis Y, Ekimov A (1989) Photoionization of semiconductor microcrystals in glass. Sov Phys Solid State 31(1):272–275Google Scholar
  2. 2.
    Kulchin YN, Shcherbakov AV, Dzyuba VP (2008) Nonlinear-optical properties of heterogeneous liquid nanophase composites based on high-energy-gap nanoparticles. Quantum Electronics 38(2):154–158CrossRefGoogle Scholar
  3. 3.
    Dzyuba VP et al (2010) Nonlinear refractive index of dielectric nanocomposites in weak optical fields. Tech Phys Lett 36(11):973–977ADSCrossRefGoogle Scholar
  4. 4.
    Dzyuba VP, Kulchin YN, Milichko VA (2013) Quantum size states of a particle inside the nanopheres. Adv Mater Res A 677:42–48CrossRefGoogle Scholar
  5. 5.
    Efros AL, Efros AL (1982) Interband absorption of light in a semiconductor sphere. Sov Phys Semicond 16(7):772–775Google Scholar
  6. 6.
    Pokutnyi SI (2007) Exciton states in semiconductor quantum dots in the framework of the modified effective mass method. Semiconductors 41(11):1323–1328ADSCrossRefGoogle Scholar
  7. 7.
    Pokutnyi SI (2013) On an exciton with a spatially separated electron and hole in quasi-zero-dimensional semiconductor nanosystems. Semiconductors 47(6):791–798ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Pokutnyi SI (2013) Binding energy of the exciton with a spatially separated electron and hole in quasi-zero-dimensional semiconductor nanosystems. Tech Phys Lett 39(3):233–235ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Pokutnyi SI, Kulchin YN, Dzyuba VP (2015) Binding energy of excitons formed from spatially separated electrons and holes in insulating quantum dots. Semiconductors 49(10):1311–1315ADSCrossRefGoogle Scholar
  10. 10.
    Pokutnyi SI (2015) Exciton states formed by spatially separated electron and hole in semiconductor quantum dots. Tech Phys 60:1615–1618CrossRefGoogle Scholar
  11. 11.
    Pokutnyi SI (2016) Excitons based on spatially separated electrons and holes in Ge/Si heterostructures with germanium quantum dots. Low Temp Phys 42(12):1151–1154ADSCrossRefGoogle Scholar
  12. 12.
    Pokutnyi SI (2018) Optical spectroscopy of excitons with spatially separated electrons and holes in nanosystems containing dielectric quantum dots. J Nanophotonics 12(2):026013–1 - 026013-16ADSCrossRefGoogle Scholar
  13. 13.
    Pokutnyi SI (2018) Exciton spectroscopy with spatially separated electron and hole in Ge/Si heterostructure with germanium quantum dots. Low Temp Phys 44(8):819–823ADSCrossRefGoogle Scholar
  14. 14.
    Yakimov AI, Dvurechensky AV et al (2001) Effects of electron-electron interaction in the optical properties of dense arrays of quantum dots Ge/Si. JETP 119:574–589Google Scholar
  15. 15.
    Pokutnyi SI, Kulchin YN (2016) Special section guest editorial: optics, spectroscopy, and nanophotonics of quantum dots. J Nanophotonics 10(3):033501–1–033501-8ADSCrossRefGoogle Scholar
  16. 16.
    Pokutnyi SI (2013) Biexcitons formed from spatially separated electrons and holes in quasi-zero-dimensional semiconductor nanosystems. Semiconductors 47(12):1626–1635ADSCrossRefGoogle Scholar
  17. 17.
    Pokutnyi SI (2016) Biexciton in nanosystem of quantum dots of cadmium Sulfide in a dielectric matrix. Tech Phys 61(11):1737–1739CrossRefGoogle Scholar
  18. 18.
    Pokutnyi SI, Kulchin YN, Dzyuba VP, Amosov AV (2016) Biexciton in nanoheterostructures of dielectric quantum dots. J Nanophotonics 10(3):036008-1–036008-8ADSGoogle Scholar
  19. 19.
    Pokutnyi SI (2017) Excitonic quasimolecules in nanosystems of quantum dots. Opt Eng 56(9):091603-1–091603-7ADSCrossRefGoogle Scholar
  20. 20.
    Pokutnyi SI (2017) Biexciton in nanoheterostructures of germanium quantum dots. Opt Eng 56(6):067104-1–067104-5ADSCrossRefGoogle Scholar
  21. 21.
    Pokutnyi SI (2016) Quantum – chemical analysis of system consisting of two CdS quantum dots. Theor Exp Chem 52(1):27–32CrossRefGoogle Scholar
  22. 22.
    Lozovik YE, Nishanov VN (1976) Exciton Wannier-Mott near the interface. Sov Phys Solid State 18(11):1905–1911Google Scholar
  23. 23.
    Efremov NA, Pokutnyi SI (1990) Spectrum of local states of charge carriers in the ultradisperse media. Sov Phys Solid State 32(10):1697–1706Google Scholar
  24. 24.
    Efremov NA, Pokutnyi SI (1991) The broadening of the quasi-stationary states of carriers in ultradisperse media. Sov Phys Solid State 33(10):1607–1612Google Scholar
  25. 25.
    Pokutnyi SI (1995) Size quantization of the exciton in quasi-zero-dimensional structures: theory. Phys Lett A 203:388–394ADSCrossRefGoogle Scholar
  26. 26.
    Pokutnyi SI (1997) Absorption and scattering of light in quasi-zero-dimensional structures: II. Absorption and scattering of light by single-particle local states of the charge carriers. Sov Phys Solid State 39(4):528–531ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergey I. Pokutnyi
    • 1
  1. 1.Chuіko Institute of Surface Chemistry of National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations