Advertisement

The Effect of Ultraviolet Irradiation on the Electro-transport Properties of Carbon Nanotubes

Transport Properties of Ultraviolet Irradiated Carbon Nanotubes
  • Oleh D. Marinin
  • Iryna V. Ovsiienko
  • Tatiana A. Len
  • Lyudmila Yu. Matzui
  • Yuriy I. Prylutskyy
  • Dina D. Naumova
  • Uwe Ritter
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)

Abstract

The results of studies of UV irradiation on the bulk specimens of MWCNTs and SWCNTs are presented. It is shown that the short-term ultraviolet irradiation leads to partial functionalization of the CNTs with oxygen-containing functional groups. It is revealed that short-time UV irradiation induces a decrease in the resistivity of bulk CNT specimens. However, there is no direct correlation between the degree of fictionalization and the relative decrease in resistivity. It is shown that the decrease in resistivity can be caused both by reducing the contact resistance between individual tubes and by changing the conduction mechanisms of the tubes themselves.

Keywords

Single-walled carbon nanotubes Multiwalled carbon nanotubes Ultraviolet irradiation Functionalization Resistivity 

References

  1. 1.
    Odegard GM, Bandyopadhyay A (2011) Physical aging of epoxy polymers and their composites. J Polym Sci B Polym Phys 49(24):1695–1716ADSCrossRefGoogle Scholar
  2. 2.
    Ning X, Xiang Z, Peng Z, Zhang S, Chen S (2013) Effect of UV ageing on space charge characteristics of epoxy resin and its nanocomposites, 2013 IEEE International Conference on Solid Dielectrics (ICSD), 30 June – 4 July 2013.  https://doi.org/10.1109/ICSD.2013.6619663
  3. 3.
    Zhang W, Shentu B, Weng Z (2018) Preparation and properties of heat and ultraviolet- induced bonding and debonding epoxy/epoxy acrylate adhesives. J Appl Polym Sci 135:46435CrossRefGoogle Scholar
  4. 4.
    Durmus H, Safak H, Akbas HZ, Ahmetli G (2011) Optical properties of modified epoxy resin with various oxime derivatives in the UV-ViS spectral region. J Appl Polym Sci 120:1490–1495CrossRefGoogle Scholar
  5. 5.
    Gaidukovs S, Medvids A, Onufrijevs P, Grase L (2018) UV-light-induced curing of branched epoxy novolac resin for coatings. Express Polym Lett 12(10):918–929CrossRefGoogle Scholar
  6. 6.
    Ferry L, Alexander-Katz R, Vigier G, Garapon C (1997) Interaction between UV radiation and filled polytetrafluoroethylene (PTFE). I. Degradation processes. J Polym Sci B 36(12):2057–2067CrossRefGoogle Scholar
  7. 7.
    Ferry L, Vassoille R, Vigier G, Bessede JL (2003) Study of polytetrafluoroethylene crystallization. Acta Polym 46(4):300–306CrossRefGoogle Scholar
  8. 8.
    Perets Y, Matzui L, Vovchenko L, Ovsiienko I, Yakovenko O, Lazareno O, Zhuravkov O, Brusylovets O (2016) Influence of ultraviolet/ozonolysis treatment of nanocarbon filler on the electrical resistivity of epoxy composites. Nanoscale Res Lett 11:370–1-370-4ADSCrossRefGoogle Scholar
  9. 9.
    Bikiaris D, Vassiliou A, Chrissafis K, Paraskevopoulos KM, Jannakoudakis A, Docoslis A (2008) Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polym Degrad Stab 93:952–967CrossRefGoogle Scholar
  10. 10.
    Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840CrossRefGoogle Scholar
  11. 11.
    Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z (2003) Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 107:3712–3718CrossRefGoogle Scholar
  12. 12.
    Tchoul MN, Ford WT, Lolli G, Resasco DE, Arepalli S (2007) Effect of mild nitric acid oxidation on dispersability, size, and structure of single-walled carbon nanotubes. Chem Mater 19:5765–5772CrossRefGoogle Scholar
  13. 13.
    Minchenko OH, Tsymbal DO, Prylutska SV, Hnatiuk OS, Prylutskyy YI (2018) Single-walled carbon nanotubes affect the expression of genes associated with immune response in normal human astrocytes. Toxicol In Vitro 52:122–130CrossRefGoogle Scholar
  14. 14.
    Ovsiienko IV, Len TA, Matzui LY, Tkachuk VY, Berkutov IB, Mirzoiev IG, Prylutskyy YI, Tsierkezos N, Ritter U (2016) Magnetoresistance of functionalized carbon nanotubes. Mat-wiss u Werkstofftech 47:254–262CrossRefGoogle Scholar
  15. 15.
    Matzui LY, Ovsienko IV, Len TA, Prylutskyy YI, Scharff P (2005) Transport properties of composites with carbon nanotube-based composites. Fuller Nanotub Car N 13(Supplement 1):259CrossRefGoogle Scholar
  16. 16.
    Matzui DV, Ovsiyenko IV, Lazarenko OA, Prylutskyy YI, Matzui VI (2011) Abnormal еlectron transport in graphite intercalation compounds with iron. Mol Cryst Liq Cryst 535:64–73CrossRefGoogle Scholar
  17. 17.
    Len TA, Ovsiienko IV, Matzui LY, Berkutov IB, Mirzoiev IG, Gnida D, Kunitskyi YA (2017) Magnetoresistance of modified carbon nanotubes. Journal of Nano- and Electronic Physics 9:01018-1–01018-7CrossRefGoogle Scholar
  18. 18.
    Liu B, Sundqvist B, Andersson O, Wagberg T, Nyeanchi EB, Zhu X-M, Zou G (2001) Electric resistance of single-walled carbon nanotubes under hydrostatic pressure. Solid State Commun 118:31–36ADSCrossRefGoogle Scholar
  19. 19.
    Chauvet O, Benoit JM, Corraze B (2004) Electrical, magneto-transport and localization of charge carriers in nanocomposites based on carbon nanotubes. Carbon 42:949–952CrossRefGoogle Scholar
  20. 20.
    Ovsienko IV, Len TA, Matsuy LY, Prylutskyy YI, Berkutov IB, Andrievskii VV, Komnik YF, Mirzoiev IG, Grechnev GE, Kolesnichenko YA, Hayn R, Scharf P (2015) Magnetoresistance and electrical resistivity of N-doped multi-walled carbon nanotubes at low temperatures. Phys Status Solidi B 252:1402–1409ADSCrossRefGoogle Scholar
  21. 21.
    Len TA, Ovsiienko IV, Matzui LY, Tugay A (2014) Electrical resistance and magnetoresistance of modified carbon nanotubes. J Nano- Electron Phys 6:04024-1–04024-5Google Scholar
  22. 22.
    Ovsienko IV, Len TA, Matzui LY, Prylutskyy YI, Ritter U, Scharf P, Normand F, Eklund P (2007) Resistance of nanocarbon material containing nanotubes. Mol Cryst Liq Cryst 468:289–297CrossRefGoogle Scholar
  23. 23.
    Shiraishi M, Ata M (2002) Conduction mechanisms in single-walled carbon nanotubes. Synth Met 128:235–239CrossRefGoogle Scholar
  24. 24.
    Simmons JM, Nichols BM, Baker SE, Marcus MS, Castellini OM, Lee CS, Hamers RJ, Eriksson MA (2006) The effect of ozone oxidation on single-walled carbon nanotubes. J Phys Chem B 110:7113–7118CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Oleh D. Marinin
    • 1
  • Iryna V. Ovsiienko
    • 1
  • Tatiana A. Len
    • 1
  • Lyudmila Yu. Matzui
    • 1
  • Yuriy I. Prylutskyy
    • 2
  • Dina D. Naumova
    • 3
  • Uwe Ritter
    • 4
  1. 1.Departments of PhysicsTaras Shevchenko National University of KyivKyivUkraine
  2. 2.Department of BiophysicsTaras Shevchenko National University of KyivKyivUkraine
  3. 3.Department of ChemistryTaras Shevchenko National University of KyivKyivUkraine
  4. 4.Technical University of IlmenauIlmenauGermany

Personalised recommendations