Advertisement

Computer Modeling of Nonlinear Deformation and Loss of Stability of Composite Shell Structures Under a Combined Effect of Quasi-static and Pulsed Loads

  • N. A. Abrosimov
  • L. A. IgumnovEmail author
  • S. M. Aizikovich
  • A. V. Elesin
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 110)

Abstract

The formulation and solution method of problems of nonlinear dynamic deformation, loss of stability and supercritical behavior of composite spatial shell structures under combined loading by quasistatic and pulsed effects is considered. The structure is assumed to be made up by rigidly joining plates and shells of revolution along the lines coinciding with the coordinate directions of the joined elements. Separate elements of the structure can be made of both composite and conventional isotropic materials. A kinematic model of deformation of the structural elements is based on the hypothesis of the applied theory of shells. This approach is aimed at analyzing nonstationary deformation processes in composite structures with small deformations but with large displacements and rotation angles and is implemented in the framework of a simplified version of the geometrically nonlinear shell theory. Physical relations in composite structural elements are established based on the theory of effective moduli for the entire package as a whole, and in metallic ones in the framework of the plastic flow theory. Equations of motion of a composite shell structure are derived using the virtual displacement principle with additional provisions providing joint operation of the structural elements. To solve the formulated initial boundary-value problems, an effective numerical approach has been developed, which is based on the finite-difference discretization of variational equations of motion for spatial variables and an explicit second-order accuracy time integration scheme. The admissible time integration step is determined using Neumann’s spectral criterion. In doing so, the quasistatic loading regime is modeled by assigning an external factor in the form of a linearly increasing time function attaining a stationary value during three periods of the lowest-form vibrations of the composite structure. This method is especially resultative in analyzing thin-walled shells, as well as the structural element is affected by local loads, which necessitates condensation of the grid in the zones of quickly changing solutions for spatial variables. The reliability of the developed approach is corroborated by comparing the computational results with experimental data. The characteristic forms of dynamic loss of strength and critical loads of smooth composite and isotropic cylindrical shells as well as of shells stiffened by a system of discrete ribs under combined loading by axial compression and external pressure have been analyzed.

Keywords

Composite and isotropic materials Plates Shells of revolution Nonlinear deformation Stability Numerical methods Quasistatic and dynamic loading 

Notes

Acknowledgements

The work was done with financial support from the Federal Program ‘Researches and developments in the priority directions of developing the scientific-technological complex in Russia in the years of 2014-2020’ under the Contract № 14.578.21.0246 (unique identification No RFMEFI57817X0246).

References

  1. 1.
    Volmir, A.S.: Nelineynaya dinamika plastinok i obolochek. (in Rus.). Nauka, 432 (1972)Google Scholar
  2. 2.
    Grigolyuk, E.I., Selezov, I.T.: Mehanika tverdyh deformiruemyh tel. (in Rus.). 5. Neklassicheskiye teorii kolebaniya sterzhney, plastin i obolochek. Itogi nauki i tehn. VINITI AN SSSR. Nauka (1973)Google Scholar
  3. 3.
    Pertsev, A.К., Platonov, E.G.: Dinamika obolochek i plastin. (in Rus.) L.: Sudostroyeniye, 317 (1987)Google Scholar
  4. 4.
    Lugovoy, P.Z.: Dinamika obolochechnyh konstruktsyi pri impulsnyh nagruzkah (obzor) (in Rus.). Prikladnaya Mehanika. 26. № 8, 3–20 (1990)Google Scholar
  5. 5.
    Amiro, I.Y., Zarutskiy, V.A., Palamarchuk, V.G.: Dinamika rebristyh obolochek. (in Rus.) Кiyev: Naukova dumka, 204 (1983)Google Scholar
  6. 6.
    Dudchenko, A.A., Lurye, S.A., Obraztsov, I.F.: Anizotropnye mnogosloynye plastiny i obolochki (in Rus.). Itogi nauki n tehn. Ser. Mehanika deformiruyemogo tverdogo tela. VINITI. 15. 3–68 (1983)Google Scholar
  7. 7.
    Bogdanovich, A.E.: Helineynye zadachi dinamiki tsilindricheskih kompozitnyh obolochek. (in Rus.) – Riga: Zinatne, 295 (1987)Google Scholar
  8. 8.
    Abrosimov, N.A., Bazhenov, V.G., Elesin, A.V.: Chislennyi analiz dinamicheskogo deformirovaniya I poteri ustoichivosti kompozitnyh obolochek vrasheniya pri impulsnom hagruzhenii (in Rus.). Mehanika kompozitnyh materialov. 31. № 1. 65–71 (1995)Google Scholar
  9. 9.
    Christoforou, A.P., Swanson, S.R.: Analysis of Simply-Supported Ortotropic Cylindrical Shells Subject to Lateral Impact Loads. Transaction of the ASME. J. Appl. Mech. 57, 376–382 (1990)Google Scholar
  10. 10.
    Manevich, L.I., Mihailov, G.V., Pavlenko, I.D., Prokopalo, E.F.: Issledovaniye ustoychivosti obolochek pri sovmestnom deystvii staticheskih i dinamicheskih nagruzok (in Rus.). Prikladnaya mehanika. XIII. № 1, 27–32 (1977)Google Scholar
  11. 11.
    Baskakov, V.N., Кostoglotov, A.I., Shvetsova, L.A.: Issledovaniye dinamicheskoy ustoycivosti gladkih tsilindricheskih obolochek. (in Rus.) Problemy prochnosti. № 5, 31–33 (1982)Google Scholar
  12. 12.
    Bendyukov, V.V., Deryushev, V.V.: Dinamicheskaya korotkovolnovaya neustiychivost tonkostennyh tsilindricheskih obolochek pri lokalnom deystvii impulse vneshnego davleniya (in Rus.). Problemy prochnosti. № 4, 36–43 (1995)Google Scholar
  13. 13.
    Andreyev, L.V., Кrushelnitskiy, I.N., Pavlenko, I.D., Privarnikov, Y.К., Prokopalo, E.F.: Dinamicheskaya ustoychivost podkreplennyh tsilindricheskih obolochek pri nagruzhenii impulsom vneshnego davleniya (in Rus.). Izv. AN SSSR. Mehanika tverdogo tela. № 1, 118–125 (1974)Google Scholar
  14. 14.
    Кostoglotov, A.I., Bendyukov, V.V., Deryushev, V.V., Shevtsova, L.A.: Issledovaniye protsessa poteri ustoychivosti gladkih tonkostennyh tsilindricheskih obolochek pri lokalnom deystvii impulse izlucheniya (in Rus.). Problemy prochnosti. № 5, 56–62 (2004)Google Scholar
  15. 15.
    Abrosimov, N.A., Elesin, A.V.: Chisslennyi analiz dinamicheskogo deformirovaniya i poteri ustoychivosti predvaritelno napryazhennyh kompozitnyh tsilindricheskih obolochek (in Rus.). Problemy prochnosti I plastichnosti. 79. № 4, 375–386 (2017)Google Scholar
  16. 16.
    Bogdanovich, A.E., Кoshkina, T.B.: Deformirovaniye i prochnost ortotropnyh tsilindricheskih obolochek, podkreplennyh prodolnymi rebrami zhestkosti, pri dinamicheskih szhimayushih nagruzkah (in Rus.). Mehanika kompozit. materialov. № 5, 866–876 (1984)Google Scholar
  17. 17.
    Bogdanovich, A.E.: Resheniye nelineynyh zadach dinamicheskogo vypuchivaniya podkreplennyh sloistyh tsilindricheskih obolochek (in Rus.). Prikl. Mehanika. 22. № 8, 57–66 (1986)Google Scholar
  18. 18.
    Myshonkov, A.К.: Dinamicheskoye povedeniye rebristoy obolochki pri deystvii bokovoy impulsnoy nagruzki (in Rus.). Prikl. mehanika. 22. № 7, 49–53 (1986)Google Scholar
  19. 19.
    Meysh, V.F.: Nelineynoye deformirovaniye prodolno podkreplennyh orto-tropnyh tsilindricheskih obolochek pri nestatsionarnyh nagruzkah (in Rus.). Mehanika kompozitnyh materialov. 29. № 2, 184–190 (1993)Google Scholar
  20. 20.
    Andreev, L.V., Dubovik, O.N., Dyshko, A.L., Pavlenko, I.D.: Priblizhyonnye otsenki kriticheskogo impulse tsilindricheskoy obolochki, podkreplennoy prodol-nymi diskretnymi rebrami. Problemy prochnosti. № 3, 66–69 (1978)Google Scholar
  21. 21.
    Skurlatov, E.D.: Eksperimentalnoye issledovaniye povedeniya tsilindricheskih obolochek pri dinamicheskih nagruzkah (in Rus.). Problemy prochnosti. № 9, 79–83 (1972)Google Scholar
  22. 22.
    Skurlatov, E.D.: Eksperimentalnoye issledovaniye ustoychivosti tsilindricheskih obolochek pri deystvii podvizhnyh nagruzok (in Rus.). Rudy vsesoyuznoy konferentsii po teorii plastin i obolochek. Nauka, 565–568 (1973)Google Scholar
  23. 23.
    Vasilyev, V.V.: Mehanika konstruktsyi iz kompozitnyh materialov. (in Rus.). Mashinostroyenie, 272 (1988)Google Scholar
  24. 24.
    Novozhilov, V.V.: Osnovy nelineynoy teorii obolochek. (in Rus.), L.: Gostehizdat, 212 (1948)Google Scholar
  25. 25.
    Ishlinskiy, A.Y.: Obshaya teoriya plastichnosti s lineynym uprochneniyem (in Rus.). Ukr. mat. Zhurn. № 6, 314–325 (1954)Google Scholar
  26. 26.
    Abrosimov, N.A., Bazhenov, V.G.: Nelineynye zadachi dinamiki kompozitnyh konstrukstyi. (in Rus.). N.Novgorod: Izd-vo NNGU, 400 (2002)Google Scholar
  27. 27.
    Marchuk, G.I.: Metody vychislitelnoy matematiki. (in Rus.) Nauka (1980)Google Scholar
  28. 28.
    Flanagan, D.P., Belytschko, T.: A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int. J. Num. Meth. Eng. 17(5), 679–706 (1981)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • N. A. Abrosimov
    • 1
  • L. A. Igumnov
    • 1
    Email author
  • S. M. Aizikovich
    • 1
  • A. V. Elesin
    • 1
  1. 1.Research Institute for MechanicsNizhniy Novgorod Lobachevski National Research State UniversityNizhniy NovgorodRussia

Personalised recommendations