Advertisement

A Beam—Just a Beam in Linear Plane Bending

  • Reinhold KienzlerEmail author
  • Patrick Schneider
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 110)

Abstract

Starting from the equations of the linear, three-dimensional theory of elasticity, the displacements are expanded into power series in the width- and height-coordinates. By invoking the uniform-approximation method in combination with the pseudo-reduction technique, a hierarchy of beam theories of different orders of approximation is established. The first-order approximation coincides with the classical Euler-Bernoulli beam theory, whereas the second-order approximation delivers a Timoshenko-type of shear-deformable beam theory. Differences and implications are discussed.

Keywords

Taylor-series expansion Consistent beam theories Uniform approximation Pseudo reduction Euler-Bernoulli beam Timoshenko beam 

References

  1. 1.
    Schneider, P., Kienzler, R.: On exact rod/beam/shaft-theories and the coupling among them due to arbitrary material anisotropy. Int. J. Solids Struct. 56–57, 265–279 (2015)CrossRefGoogle Scholar
  2. 2.
    Almansi, E: Sopra la deformazione del cilindri sollicitati lateralmento. Atti Real Accad. Naz. Lincei Rend. Cl sci. fis. mat.e natur. Ser. 5, 400–408 (1901)Google Scholar
  3. 3.
    Michell, J.: The theory of uniformly loaded beams. Q. J. Math. 32, 28–42 (1901)Google Scholar
  4. 4.
    Saint-Venant, A. Barré de: Mémoire sur la torsion des prismes: avec des considerations sur leur flexion ainsi que sur l’equilibre interieur des solides élastiques en general: et des furmules practiques pour le calcul de leur résistance á divers efforts s’exerçant simultanément. Imprimiere nationale (1856)Google Scholar
  5. 5.
    Ciarlet, P., Destuynder, P.: A justification of the two-dimensional linear plate model. J. Mech. 18, 315–344 (1979), ParisGoogle Scholar
  6. 6.
    Giorgi, E.D.: Sulla convergenza di alcune successioni di integrali del tipo dell’aera. Rud. Mat. Appl. 8, 279–294 (1975)Google Scholar
  7. 7.
    Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55, 1461–1506 (2002)CrossRefGoogle Scholar
  8. 8.
    Vekua, I.: Shell theory: general methods of construction. Monographs. Advanced Texts and Surveys in Pure and Applied Mathematics. John Wiley & Sons, New York (1985)Google Scholar
  9. 9.
    Steigmann, D.J.: Two dimensional models for the combined bending and stretching of plates and shells based on three-dimensional linear elasticity. Int. J. Eng. Sci. 46, 654–676 (2008)CrossRefGoogle Scholar
  10. 10.
    Pruchnicki, E.: Two-dimensional model of order h5 for the combined bending, stretching, transverse shearing and transverse normal stress effects of homogeneous plates derived from three-dimensional elasticity. Math. Mech. Solids 19, 477–490 (2014)CrossRefGoogle Scholar
  11. 11.
    Naghdi, P. M.: Foundations of elastic shell theory. Progress in Solid Mechanics IV. North-Holland, Amsterdam (1963)Google Scholar
  12. 12.
    Koiter, W.: On the foundation of the linear theory of thin elastic shells. Koninklije Nederlandse Akademie van Wettenschappen, Proceedings B 73, 169–195 (1970)Google Scholar
  13. 13.
    Krätzig, W.: On the structure of consistent linear shell theories. In: Koiter, W., Mikhailov, G. (eds.) Theory of plates and shells, pp. 359–368. North-Holland, Amsterdam (1980)Google Scholar
  14. 14.
    Kienzler, R.: Eine Erweiterung der klassischen Schalentheorie; Der Einfluss von Dickenverzerrungen und Querschnittsverwölbungen. Ing. Arch. 52, 311–322 (1982). Extended version in Ph.D.-Thesis, Technische Hochschule Darmstadt, Darmstadt (1980)Google Scholar
  15. 15.
    Kienzler, R.: On consistent plate theories. Arch. Appl. Mech. 72, 229–247 (2002)CrossRefGoogle Scholar
  16. 16.
    Kienzler, R.: On consistent second-order plate theories. In: Kienzler, R., Ott, I., Altenbach, H. (eds.) Theories of Plates and Shells: Critical Review and New Applications, pp. 85–96. Springer, Berlin (2004)CrossRefGoogle Scholar
  17. 17.
    Schneider, P., Kienzler, R., Böhm, M.: Modeling of consistent second-order plate theories for anisotropic materials. Z. Angew. Math. Mech. 94, 21–42 (2014)CrossRefGoogle Scholar
  18. 18.
    Schneider, P.: On the mathematical justification of the consistent-approximation approach and the derivation of a shear-correction-factor free refined beam theory. Dissertation. University Bremen (2015). http://nbn-resolving.de/um:nbn:de:gbv:46-00104458-18
  19. 19.
    Schneider, P., Kienzler, R.: An algorithm for the automatisation of pseudo reduction of PDE systems arising from the uniform-approximation technique. In: Altenbach, H., Eremeyev, V. (Eds.), Shell-like structures. Advanced structural Materials, vol. 15, pp. 377–390. Springer, Berlin (2011)Google Scholar
  20. 20.
    Kienzler, R., Schneider, P.: Consistent theories of isotropic and anisotropic plates. J. Theor. Appl. Mech. 25, 755–768 (2012)Google Scholar
  21. 21.
    Schneider, P., Kienzler, R.: A Reissner-type plate theory for monoclinic material derived by extending the uniform-approximation technique by orthogonal tensor decomposition of the nth-order gradient. Meccanica 52, 2143–2167 (2017)CrossRefGoogle Scholar
  22. 22.
    Kienzler, R., Schneider, P.: Second-order linear plate theories: Partial differential equations, stress-resultants and displacements. Int. J. Solids Struct. 115–116, 14–26 (2017)CrossRefGoogle Scholar
  23. 23.
    Reissner, E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184–191 (1944)CrossRefGoogle Scholar
  24. 24.
    Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12, 89–77 (1945)Google Scholar
  25. 25.
    Timoshenko, S.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. Ser. 6(41), 744–746 (1920)Google Scholar
  26. 26.
    Timoshenko, S.: On the transverse vibrations of bars of uniform cross-section. Philos. Mag. Ser. 6(43), 125–131 (1922)CrossRefGoogle Scholar
  27. 27.
    Timoshenko, S., Young, D.H.: Elements of strength of materials, 4th edn. Van Nostrand, Princeton, New Jersey, USA (1962)Google Scholar
  28. 28.
    Olsson, R.G.: Zur Berechnung der Frequenz der Transversalschwingung des prismatischen Stabes. Z. Angew. Math. Mech. 15, 245 (1935)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Bremen Institute for Mechanical Engineering (Bime)University of BremenBremenGermany
  2. 2.Technische Universität Darmstadt, Institute for Lightweight Construction and Design (KLuB)DarmstadtGermany

Personalised recommendations