Advertisement

2D Theory of Shell-like Tensegrity Structures

  • Wojciech GilewskiEmail author
  • Paulina Obara
  • Anna Al Sabouni-Zawadzka
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 110)

Abstract

Six-parameter shell theory is proposed for tensegrity-like structures. Continuum model to describe mechanical properties of tensegrity lattices is based on the equivalence of the strain energy with discrete model. Parametric analysis is presented to describe the influence of geometrical properties and the level of self-equilibrated normal forces to the static response of the structure.

Keywords

Six-parameter shell theory Tensegrity 

References

  1. 1.
    Pietraszkiewicz, W.: Consistent second approximation to the elastic strain energy in a shell. Z Angew Math. Mech. 59, 206–208 (1979)Google Scholar
  2. 2.
    Pietraszkiewicz, W.: Finite Rotations and Lagrangean Description in the Non-linear Theory of Shells. Polish Scientific Publishers, Warsaw, Poznań (1979)Google Scholar
  3. 3.
    Pietraszkiewicz, W., Babur, J.: Finite rotations in the description of continuum deformation. Int. J. Eng. Sci. 21, 1097–1115 (1983)CrossRefGoogle Scholar
  4. 4.
    Chróścielewski, J., Makowski, J., Pietraszkiewicz, W.: Nonlinear dynamics of flexible shell structures. Comp. Ass. Mech. Eng. Sci. 9, 341–357 (2002)Google Scholar
  5. 5.
    Chróścielewski, J., Makowski, J., Pietrasziewicz, W.: Statics and Dynamics of Multifold-shells: Nonlinear Theory and Finite Element Method (in Polish). IFTR Polish Academy of Sciences Press, Warsaw (2004)Google Scholar
  6. 6.
    Eremeyev, V.A., Pietraszkiewicz, W.: The non-linear theory of elastic shells with phase transition. J. Elast. 74, 67–86 (2004)CrossRefGoogle Scholar
  7. 7.
    Eremeyev, V.A., Pietraszkiewicz, W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85, 125–152 (2006)CrossRefGoogle Scholar
  8. 8.
    Chróścielewski, J., Witkowski, W.: Four-node semi-EAS element in six-field nonlinear theory of shells. Int. J. Numer. Meth. Eng. 68, 1137–1179 (2006)CrossRefGoogle Scholar
  9. 9.
    Panasz, P., Wiśniewski, K.: Nine-node shell elements with 6 dofs/node based on two-level approximation. Finite Elem. Anal. Des. 44, 784–796 (2008)CrossRefGoogle Scholar
  10. 10.
    Gilewski, W.: High-precision finite elements on moderately thick shell theory. Ph.D. dissertation. Warsaw University of Technology (1986)Google Scholar
  11. 11.
    Gilewski, W., Al Sabouni-Zawadzka, A., Pełczyński, J.: Physical shape functions in 6-parametre shell theory finite elements. In: Pietraszkiewicz, W., Witkowski, W. (Eds.) Shell Structures: Theory and Applications 4. CRC Press, Boca Raton, London, New York, Leiden (2017)CrossRefGoogle Scholar
  12. 12.
    Al Sabouni-Zawadzka, A., Kłosowska, J., Obara, P., Gilewski, W.: Continuum model of orthotropic tensegrity plate-like structures with self-stress included. Engng. Trans. 64, 501–508 (2016)Google Scholar
  13. 13.
    Obara, P., Gilewski, W.: Discrete and equivalent 6-parameter shell approach to simulate mechanical behavior of tensegrity lattices. Solmech 2018, Warsaw, Poland (2018)Google Scholar
  14. 14.
    Pugh, A.: An Introduction to Tensegrity. University California Press, Berkeley, Los Angeles, London (1976)Google Scholar
  15. 15.
    Motro, R.: Tensegrity: Structural Systems for the Future. Kogan Page, London (2003)CrossRefGoogle Scholar
  16. 16.
    Skelton, R.E., de Oliveira, M.C.: Tensegrity Systems. Springer, London (2009)Google Scholar
  17. 17.
    Al Sabouni-Zawadzka, A., Gilewski, W.: Inherent properties of smart tensegrity structures. Appl. Sci. 8, 787-1-14 (2018)CrossRefGoogle Scholar
  18. 18.
    Kasprzak, A., Gilewski, W.: 3D Continuum Model of Tensegrity Modules with the Effect of Self-stress. WCCM XI, ECCM V, Barcelona, Spain (2014)Google Scholar
  19. 19.
    Pellegrino, S., Calladine, C.R.: Matrix analysis of statically and kinematically indeterminate frameworks. Int. J. Solid Struct. 22, 409–422 (1990)CrossRefGoogle Scholar
  20. 20.
    Lewiński, T.: On algebraic equations of elastic trusses, frames and grillages. J. Theor. Appl. Mech. 39, 307–322 (2001)Google Scholar
  21. 21.
    Pełczyński, J., Gilewski, W.: An extension of algebraic equations of elastic trusses with self-equilibrated system of forces. ECMM 6, Glasgow, UK (2018)Google Scholar
  22. 22.
    Green, A.E., Zerna, W.: Theoretical Elasticity. Press, Oxford, UK, Oxford Uni (1968)Google Scholar
  23. 23.
    Chadwick, P., Vianello, M., Cowin, S.A.: A new proof that the number of linear elastic symmetries is eight. J. Mech. Phys. Solids 49, 2471–2492 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wojciech Gilewski
    • 1
    Email author
  • Paulina Obara
    • 2
  • Anna Al Sabouni-Zawadzka
    • 1
  1. 1.Warsaw University of TechnologyWarsawPoland
  2. 2.Kielce University of TechnologyKielcePoland

Personalised recommendations