Advertisement

Recent Achievements in Constitutive Equations of Laminates and Functionally Graded Structures Formulated in the Resultant Nonlinear Shell Theory

  • Stanisław Burzyński
  • Jacek Chróścielewski
  • Karol DaszkiewiczEmail author
  • Agnieszka Sabik
  • Bartosz Sobczyk
  • Wojciech Witkowski
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 110)

Abstract

The development of constitutive equations formulated in the resultant nonlinear shell theory is presented. The specific features of the present shell theory are drilling rotation naturally included in the formulation and asymmetric measures of strains and stress resultants. The special attention in the chapter is given to recent achievements: progressive failure analysis of laminated shells and elastoplastic constitutive relation for shells made of functionally graded material (FGM). The modified Hashin criterion is used to estimate failure initiation in laminates and stiffness degradation approach in the last ply failure computations. The numerical results obtained for axially compressed C-shaped column are compared with experimental load-deflection curve. The Cosserat plane stress assumption, Tamura-Tomota-Ozawa (TTO) model and improved method of shear correction factor calculation are applied in the elastoplastic constitutive relation for FGM shell. The proposed formulation is tested in numerical examples: rectangular compressed plate and channel section clamped beam. The influence of TTO model parameters and Cosserat characteristic length is investigated.

Notes

Acknowledgements

The research reported in this paper was supported by the National Science Centre, Poland with the grant UMO-2015/17/B/ST8/02190. Parallel solver for CAM elements is developed on the basis of HSL, a collection of Fortran codes for large-scale scientific computation. http://www.hsl.rl.ac.uk. Abaqus calculations were carried out at the Academic Computer Centre in Gdańsk.

References

  1. 1.
    Reissner, E.: Linear and nonlinear theory of shells. In: Fung, Y.C., Sechler, E.E. (eds.) Thin Shell Structures, pp. 29–44. Prentice-Hall, Englewood Cliffs (1974)Google Scholar
  2. 2.
    Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  3. 3.
    Chróścielewski, J., Makowski, J., Pietraszkiewicz, W.: Statyka i Dynamika Powłok Wielopłatowych: Nieliniowa teoria i metoda elementów skończonych (Statics and Dynamics of Multifold Shells: Nonlinear Theory and Finite Element Method). Wydawnictwo IPPT PAN, Warszawa (2004)Google Scholar
  4. 4.
    Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80, 73–92 (2010).  https://doi.org/10.1007/s00419-009-0365-3CrossRefGoogle Scholar
  5. 5.
    Neff, P.: A geometrically exact Cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. Part I: Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Contin. Mech. Thermodyn. 16, 577–628 (2004).  https://doi.org/10.1007/s00161-004-0182-4CrossRefGoogle Scholar
  6. 6.
    Chróścielewski, J., Makowski, J., Stumpf, H.: Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int. J. Numer. Methods Eng. 35, 63–94 (1992).  https://doi.org/10.1002/nme.1620350105CrossRefGoogle Scholar
  7. 7.
    Pietraszkiewicz, W., Konopińska, V.: Drilling couples and refined constitutive equations in the resultant geometrically non-linear theory of elastic shells. Int. J. Solids Struct. 51, 2133–2143 (2014).  https://doi.org/10.1016/j.ijsolstr.2014.02.022CrossRefGoogle Scholar
  8. 8.
    Burzyński, S., Chróścielewski, J., Daszkiewicz, K., Pietraszkiewicz, W., Sabik, A., Sobczyk, B., Witkowski, W.: On constitutive relations in the resultant non-linear theory of shells. In: Kołakowski, Z., Mania, R.J. (eds.) Statics, Dynamics and Stability of Structures. Selected Problems of Solid Mechanics, pp. 298–318. Lodz University of Technology, Lodz (2016)Google Scholar
  9. 9.
    Makowski, J., Stumpf, H.: Finite strains and rotations in shells. In: Pietraszkiewicz, W. (ed.) Finite Rotations in Structural Mechanics. Lecture Notes in Engineering, vol. 19, pp. 175–194. Springer, Berlin (1986)CrossRefGoogle Scholar
  10. 10.
    Eremeyev, V.A., Pietraszkiewicz, W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85, 125–152 (2006).  https://doi.org/10.1007/s10659-006-9075-zCrossRefGoogle Scholar
  11. 11.
    Altenbach, H., Eremeyev, V.A.: On the linear theory of micropolar plates. ZAMM Zeitschrift fur Angew. Math. und Mech. 89, 242–256 (2009).  https://doi.org/10.1002/zamm.200800207CrossRefGoogle Scholar
  12. 12.
    Chróscielewski, J., Witkowski, W.: On some constitutive equations for micropolar plates. ZAMM Zeitschrift fur Angew. Math. und Mech. 90, 53–64 (2010).  https://doi.org/10.1002/zamm.200900366CrossRefGoogle Scholar
  13. 13.
    Chróścielewski, J., Witkowski, W.: FEM analysis of Cosserat plates and shells based on some constitutive relations. ZAMM Zeitschrift fur Angew. Math. und Mech. 91, 400–412 (2011).  https://doi.org/10.1002/zamm.201000090CrossRefGoogle Scholar
  14. 14.
    Burzyński, S., Chróścielewski, J., Witkowski, W.: Geometrically nonlinear FEM analysis of 6-parameter resultant shell theory based on 2-D Cosserat constitutive model. ZAMM - J. Appl. Math. Mech. Zeitschrift für Angew. Math. und Mech. 96, 191–204 (2016).  https://doi.org/10.1002/zamm.201400092CrossRefGoogle Scholar
  15. 15.
    Burzyński, S., Chróścielewski, J., Witkowski, W.: Elastoplastic material law in 6-parameter nonlinear shell theory. In: Pietraszkiewicz, W., Górski, J. (eds.) 10th Jubilee Conference on Shell Structures—Theory and Applications (SSTA), pp. 377–380. CRC Press, London (2014)Google Scholar
  16. 16.
    Burzyński, S., Chróścielewski, J., Witkowski, W.: Elastoplastic law of Cosserat type in shell theory with drilling rotation. Math. Mech. Solids. 20, 790–805 (2015).  https://doi.org/10.1177/1081286514554351CrossRefGoogle Scholar
  17. 17.
    Daszkiewicz, K., Chróścielewski, J., Witkowski, W.: Geometrically nonlinear analysis of functionally graded shells based on 2-D Cosserat constitutive model. Eng. Trans. 62, 109–130 (2014)Google Scholar
  18. 18.
    Burzyński, S., Chróścielewski, J., Daszkiewicz, K., Witkowski, W.: Geometrically nonlinear FEM analysis of FGM shells based on neutral physical surface approach in 6-parameter shell theory. Compos. Part B Eng. 107, 203–213 (2016).  https://doi.org/10.1016/j.compositesb.2016.09.015CrossRefGoogle Scholar
  19. 19.
    Tamura, I., Tomota, Y., Ozawa, M.: Strength and ductility of Iron-Nickel-Carbon alloys composed of austenite and martensite with various strength. In: 3rd International Conference on Strength of Metals and Alloys, pp. 611–615. Institute of Metal and Iron, Cambridge (1973)Google Scholar
  20. 20.
    Burzyński, S., Chróścielewski, J., Daszkiewicz, K., Witkowski, W.: Elastoplastic nonlinear FEM analysis of FGM shells of Cosserat type. Compos. Part B Eng. 154, 478–491 (2018).  https://doi.org/10.1016/j.compositesb.2018.07.055CrossRefGoogle Scholar
  21. 21.
    Chróścielewski, J., Sabik, A., Sobczyk, B., Witkowski, W.: 2-D constitutive equations for orthotropic Cosserat type laminated shells in finite element analysis. Compos. Part B Eng. 165, 335–353 (2019).  https://doi.org/10.1016/j.compositesb.2018.11.101CrossRefGoogle Scholar
  22. 22.
    Chróścielewski, J., Kreja, I., Sabik, A., Witkowski, W.: Modeling of composite shells in 6-parameter nonlinear theory with drilling degree of freedom. Mech. Adv. Mater. Struct. 18, 403–419 (2011).  https://doi.org/10.1080/15376494.2010.524972CrossRefGoogle Scholar
  23. 23.
    Chróścielewski, J., Sabik, A., Sobczyk, B., Witkowski, W.: Nonlinear FEM 2D failure onset prediction of composite shells based on 6-parameter shell theory. Thin-Walled Struct. 105, 207–219 (2016).  https://doi.org/10.1016/j.tws.2016.03.024CrossRefGoogle Scholar
  24. 24.
    Sobczyk, B.: FEM analysis of composite materials failure in nonlinear six field shell theory. Doctoral Thesis (2016)Google Scholar
  25. 25.
    Sabik, A.: Progressive failure analysis of laminates in the framework of 6-field non-linear shell theory. Compos. Struct. 200, 195–203 (2018).  https://doi.org/10.1016/j.compstruct.2018.05.069CrossRefGoogle Scholar
  26. 26.
    Debski, H., Teter, A.: Effect of load eccentricity on the buckling and post-buckling states of short laminated Z-columns. Compos. Struct. 210, 134–144 (2019).  https://doi.org/10.1016/j.compstruct.2018.11.044CrossRefGoogle Scholar
  27. 27.
    Kim, Y.J.: State of the practice of FRP composites in highway bridges. Eng. Struct. 179, 1–8 (2019).  https://doi.org/10.1016/j.engstruct.2018.10.067CrossRefGoogle Scholar
  28. 28.
    Siwowski, T., Kulpa, M., Rajchel, M., Poneta, P.: Design, manufacturing and structural testing of all-composite FRP bridge girder. Compos. Struct. 206, 814–827 (2018).  https://doi.org/10.1016/j.compstruct.2018.08.048CrossRefGoogle Scholar
  29. 29.
    Birman, V., Kardomateas, G.A.: Review of current trends in research and applications of sandwich structures. Compos. Part B Eng. 142, 221–240 (2018).  https://doi.org/10.1016/j.compositesb.2018.01.027CrossRefGoogle Scholar
  30. 30.
    Amaro, A.M., Pinto, M.I.M., Reis, P.N.B., Neto, M.A., Lopes, S.M.R.: Structural integrity of glass/epoxy composites embedded in cement or geopolymer mortars. Compos. Struct. 206, 509–516 (2018).  https://doi.org/10.1016/j.compstruct.2018.08.060CrossRefGoogle Scholar
  31. 31.
    Zhang, X., Shi, Y., Li, Z.-X.: Experimental study on the tensile behavior of unidirectional and plain weave CFRP laminates under different strain rates. Compos. Part B Eng. 164, 524–536 (2019).  https://doi.org/10.1016/j.compositesb.2019.01.067CrossRefGoogle Scholar
  32. 32.
    Zhang, Z., He, M., Liu, A., Singh, H.K., Ramakrishnan, K.R., Hui, D., Shankar, K., Morozov, E.V.: Vibration-based assessment of delaminations in FRP composite plates. Compos. Part B Eng. 144, 254–266 (2018).  https://doi.org/10.1016/j.compositesb.2018.03.003CrossRefGoogle Scholar
  33. 33.
    Gliszczynski, A., Kubiak, T., Borkowski, L.: Experimental investigation of pre-damaged thin-walled channel section column subjected to compression. Compos. Part B Eng. 147, 56–68 (2018).  https://doi.org/10.1016/j.compositesb.2018.04.022CrossRefGoogle Scholar
  34. 34.
    Altaee, M., Cunningham, L.S., Gillie, M.: Practical application of CFRP strengthening to steel floor beams with web openings: a numerical investigation. J. Constr. Steel Res. 155, 395–408 (2019).  https://doi.org/10.1016/j.jcsr.2019.01.006CrossRefGoogle Scholar
  35. 35.
    Chróścielewski, J., Miśkiewicz, M., Pyrzowski, Ł., Rucka, M., Sobczyk, B., Wilde, K.: Modal properties identification of a novel sandwich footbridge—comparison of measured dynamic response and FEA. Compos. Part B Eng. 151, 245–255 (2018).  https://doi.org/10.1016/j.compositesb.2018.06.016CrossRefGoogle Scholar
  36. 36.
    Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells, Theory and Analysis, 2nd edn. CRC Press, Boca Raton, London, New York, Washington.C (2004)Google Scholar
  37. 37.
    Kaw, A.: Mechanics of Composite Materials, 2nd edn. Taylor & Francis Group, Boca Raton, London, New York (2006)Google Scholar
  38. 38.
    Davila, C.G., Camanho, P.P., Rose, C.A.: Failure criteria for FRP laminates. J. Compos. Mater. 39, 323–345 (2005).  https://doi.org/10.1177/0021998305046452CrossRefGoogle Scholar
  39. 39.
    Hinton, M., Kaddour, A., Soden, P.: A further assessment of the predictive capabilities of current failure theories for composite laminates: comparison with experimental evidence. Compos. Sci. Technol. 64, 549–588 (2004).  https://doi.org/10.1016/S0266-3538(03)00227-6CrossRefGoogle Scholar
  40. 40.
    Kaddour, A.S., Hinton, M.J., Soden, P.D.: A comparison of the predictive capabilities of current failure theories for composite laminates: additional contributions. Compos. Sci. Technol. 64, 449–476 (2004).  https://doi.org/10.1016/S0266-3538(03)00226-4CrossRefGoogle Scholar
  41. 41.
    Soden, P., Kaddour, A., Hinton, M.: Recommendations for designers and researchers resulting from the world-wide failure exercise. Compos. Sci. Technol. 64, 589–604 (2004).  https://doi.org/10.1016/S0266-3538(03)00228-8CrossRefGoogle Scholar
  42. 42.
    Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 62, 1633–1662 (2002).  https://doi.org/10.1016/S0266-3538(01)00208-1CrossRefGoogle Scholar
  43. 43.
    Reddy, Y.S.N., Dakshina Moorthy, C.M., Reddy, J.N.: Non-linear progressive failure analysis of laminated composite plates. Int. J. Non. Linear. Mech. 30, 629–649 (1995).  https://doi.org/10.1016/0020-7462(94)00041-8CrossRefGoogle Scholar
  44. 44.
    Xie, D., Biggers, S.B.: Postbuckling analysis with progressive damage modeling in tailored laminated plates and shells with a cutout. Compos. Struct. 59, 199–216 (2003).  https://doi.org/10.1016/S0263-8223(02)00233-7CrossRefGoogle Scholar
  45. 45.
    Ambur, D.R., Jaunky, N., Hilburger, M., Dávila, C.G.: Progressive failure analyses of compression-loaded composite curved panels with and without cutouts. Compos. Struct. 65, 143–155 (2004).  https://doi.org/10.1016/S0263-8223(03)00184-3CrossRefGoogle Scholar
  46. 46.
    Bai, J.B., Shenoi, R.A., Yun, X.Y., Xiong, J.J.: Progressive damage modelling of hybrid RTM-made composite Π-joint under four-point flexure using mixed failure criteria. Compos. Struct. 159, 327–334 (2017).  https://doi.org/10.1016/j.compstruct.2016.09.083CrossRefGoogle Scholar
  47. 47.
    Matzenmiller, A., Lubliner, J., Taylor, R.L.: A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 20, 125–152 (1995).  https://doi.org/10.1016/0167-6636(94)00053-0CrossRefGoogle Scholar
  48. 48.
    Lee, C.S., Kim, J.H., Kim, S.K., Ryu, D.M., Lee, J.M.: Initial and progressive failure analyses for composite laminates using Puck failure criterion and damage-coupled finite element method. Compos. Struct. 121, 406–419 (2015).  https://doi.org/10.1016/j.compstruct.2014.11.011CrossRefGoogle Scholar
  49. 49.
    Lopes, C.S., Camanho, P.P., Gürdal, Z., Tatting, B.F.: Progressive failure analysis of tow-placed, variable-stiffness composite panels. Int. J. Solids Struct. 44, 8493–8516 (2007).  https://doi.org/10.1016/j.ijsolstr.2007.06.029CrossRefGoogle Scholar
  50. 50.
    Gliszczynski, A., Kubiak, T.: Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression. Compos. Struct. 169, 52–61 (2017).  https://doi.org/10.1016/j.compstruct.2016.10.029CrossRefGoogle Scholar
  51. 51.
    Sabik, A.: Direct shear stress vs strain relation for fiber reinforced composites. Compos. Part B Eng. 139, 24–30 (2018).  https://doi.org/10.1016/j.compositesb.2017.11.057CrossRefGoogle Scholar
  52. 52.
    Shen, M., Bever, M.B.: Gradients in polymeric materials. J. Mater. Sci. 7, 741–746 (1972).  https://doi.org/10.1007/BF00549902CrossRefGoogle Scholar
  53. 53.
    Jha, D.K., Kant, T., Singh, R.K.: A critical review of recent research on functionally graded plates. Compos. Struct. 96, 833–849 (2013).  https://doi.org/10.1016/j.compstruct.2012.09.001CrossRefGoogle Scholar
  54. 54.
    Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M., Carrera, E.: Stress, vibration and buckling analyses of FGM plates—a state- of-the-art review. Compos. Struct. 120, 10–31 (2015).  https://doi.org/10.1016/j.compstruct.2014.09.070CrossRefGoogle Scholar
  55. 55.
    Williamson, R.L., Rabin, B.H., Drake, J.T.: Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part I. Model description and geometrical effects. J. Appl. Phys. 74, 1310–1320 (1993).  https://doi.org/10.1063/1.354910CrossRefGoogle Scholar
  56. 56.
    Drake, J.T., Williamson, R.L., Rabin, B.H.: Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part II. Interface optimization for residual stress reduction. J. Appl. Phys. 74, 1321–1326 (1993).  https://doi.org/10.1063/1.354911CrossRefGoogle Scholar
  57. 57.
    Jin, Z.H., Paulino, G.H., Dodds, R.H.: Cohesive fracture modeling of elastic-plastic crack growth in functionally graded materials. Eng. Fract. Mech. 70, 1885–1912 (2003).  https://doi.org/10.1016/S0013-7944(03)00130-9CrossRefGoogle Scholar
  58. 58.
    Baghani, M., Fereidoonnezhad, B.: Limit analysis of FGM circular plates subjected to arbitrary rotational symmetric loads using von-Mises yield criterion. Acta Mech. 224, 1601–1608 (2013).  https://doi.org/10.1007/s00707-013-0828-zCrossRefGoogle Scholar
  59. 59.
    Gunes, R., Aydin, M., Kemal Apalak, M., Reddy, J.N.: Experimental and numerical investigations of low velocity impact on functionally graded circular plates. Compos. Part B Eng. 59, 21–32 (2014).  https://doi.org/10.1016/j.compositesb.2013.11.022CrossRefGoogle Scholar
  60. 60.
    Xu, G., Huang, H., Chen, B., Chen, F.: Buckling and postbuckling of elastoplastic FGM plates under inplane loads. Compos. Struct. 176, 225–233 (2017).  https://doi.org/10.1016/j.compstruct.2017.04.061CrossRefGoogle Scholar
  61. 61.
    Kleiber, M., Taczała, M., Buczkowski, R.: Elasto-plastic response of thick plates built in functionally graded material using the third order plate theory. In: Advances in Computational Plasticity, pp. 185–199 (2018)Google Scholar
  62. 62.
    Huang, H., Han, Q.: Elastoplastic buckling of axially loaded functionally graded material cylindrical shells. Compos. Struct. 117, 135–142 (2014).  https://doi.org/10.1016/j.compstruct.2014.06.018CrossRefGoogle Scholar
  63. 63.
    Zhang, Y., Huang, H., Han, Q.: Buckling of elastoplastic functionally graded cylindrical shells under combined compression and pressure. Compos. Part B Eng. 69, 120–126 (2015).  https://doi.org/10.1016/j.compositesb.2014.09.024CrossRefGoogle Scholar
  64. 64.
    Kalali, A.T., Hassani, B., Hadidi-Moud, S.: Elastic-plastic analysis of pressure vessels and rotating disks made of functionally graded materials using the isogeometric approach. J. Theor. Appl. Mech. 113 (2016).  https://doi.org/10.15632/jtam-pl.54.1.113
  65. 65.
    Akis, T.: Elastoplastic analysis of functionally graded spherical pressure vessels. Comput. Mater. Sci. 46, 545–554 (2009).  https://doi.org/10.1016/j.commatsci.2009.04.017CrossRefGoogle Scholar
  66. 66.
    Jrad, H., Mars, J., Wali, M., Dammak, F.: Geometrically nonlinear analysis of elastoplastic behavior of functionally graded shells. Eng. Comput. (2018).  https://doi.org/10.1007/s00366-018-0633-3CrossRefGoogle Scholar
  67. 67.
    Mathew, T.V., Natarajan, S., Martínez-Pañeda, E.: Size effects in elastic-plastic functionally graded materials. Compos. Struct. 204, 43–51 (2018).  https://doi.org/10.1016/j.compstruct.2018.07.048CrossRefGoogle Scholar
  68. 68.
    Jeong, J., Ramezani, H., Münch, I., Neff, P.: A numerical study for linear isotropic Cosserat elasticity with conformally invariant curvature. ZAMM Zeitschrift fur Angew. Math. und Mech. 89, 552–569 (2009).  https://doi.org/10.1002/zamm.200800218CrossRefGoogle Scholar
  69. 69.
    Fischmeister, H., Karlsson, B.: Plastizitatseigenschaften Grob-Zweiphasiger Werkstoffe. Zeitschrift für Met. 68, 311–327 (1977)Google Scholar
  70. 70.
    Nguyen, T.K., Sab, K., Bonnet, G.: First-order shear deformation plate models for functionally graded materials. Compos. Struct. 83, 25–36 (2008).  https://doi.org/10.1016/j.compstruct.2007.03.004CrossRefGoogle Scholar
  71. 71.
    Singha, M.K., Prakash, T., Ganapathi, M.: Finite element analysis of functionally graded plates under transverse load. Finite Elem. Anal. Des. 47, 453–460 (2011).  https://doi.org/10.1016/j.finel.2010.12.001CrossRefGoogle Scholar
  72. 72.
    Daszkiewicz, K.: A family of hybrid mixed elements in 6-parameter shell theory, geometrically nonlinear analysis of functionally graded shells. Doctoral Thesis (in Polish) (2017)Google Scholar
  73. 73.
    de Borst, R.: Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng. Comput. 8, 317–332 (1991)CrossRefGoogle Scholar
  74. 74.
    de Souza Neto, E.A., Peric, D., Owen, D.R.: Computational Methods for Plasticity: Theory and Applications (2009)Google Scholar
  75. 75.
    Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer New York, Inc. (1998)Google Scholar
  76. 76.
    Eberlein, R., Wriggers, P.: Finite element concepts for finite elastoplastic strains and isotropic stress response in shells: theoretical and computational analysis. Comput. Methods Appl. Mech. Eng. 171, 243–279 (1999).  https://doi.org/10.1016/S0045-7825(98)00212-6CrossRefGoogle Scholar
  77. 77.
    Tan, X.G., Vu-Quoc, L.: Efficient and accurate multilayer solid-shell element: non-linear materials at finite strain. Int. J. Numer. Methods Eng. 63, 2124–2170 (2005).  https://doi.org/10.1002/nme.1360CrossRefGoogle Scholar
  78. 78.
    Abaqus 6.14-2 User Manual. Dassault Systemes Simulia Corp., Providence, RI, USA (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stanisław Burzyński
    • 1
  • Jacek Chróścielewski
    • 1
  • Karol Daszkiewicz
    • 1
    Email author
  • Agnieszka Sabik
    • 1
  • Bartosz Sobczyk
    • 1
  • Wojciech Witkowski
    • 1
  1. 1.Faculty of Civil and Environmental Engineering, Department of Mechanics of Materials and StructuresGdansk University of TechnologyGdańskPoland

Personalised recommendations