Advertisement

Research Updates on Heavy Metal Phytoremediation: Enhancements, Efficient Post-harvesting Strategies and Economic Opportunities

  • S. Muthusaravanan
  • N. Sivarajasekar
  • J. S. Vivek
  • S. Vasudha Priyadharshini
  • T. Paramasivan
  • Nirajan Dhakal
  • Mu. Naushad
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 38)

Abstract

The remediation of heavy metal-contaminated sites must be viewed seriously as they affect the animal and human health. The amount of heavy metal released from the industries into the environment is expected to be more in the future due to rapid urbanization, industrialization, increased population and war spoil. The plant-mediated remediation of heavy metals from the contaminated site known as ‘phytoremediation’ was found to be effective, economically viable and safe. In this review, we elaborate the effect of heavy metal on human health, mechanisms of metal uptake in plants, enhancement techniques and challenges in the implementation of phytoremediation, comparison of existing physiochemical methods available for heavy metal with phytoremediation and disposal of metal-contaminated plant biomass in the economically profitable ways.

Keywords

Heavy metals Phytoremediation Mechanisms Challenges Disposal Economy 

Abbreviations

CDTA

Cyclohexane-1,2-diamine tetra-acetic acid

CNS

Central nervous system

DMA

Dimethyl arsenic acid

DTPA

Diethylenetriaminepentaacetic acid

EDDS

Ethylenediamine-N, N′-disuccinic acid

EDTA

Ethylene diamine tetra-acetic acid

EDX

Energy-dispersive X-ray spectroscopy

EGTA

Ethylene glycol-bis-(beta-amino-ethyl ether) N, N, N′, N′-tetra-acetic acid

GI

Gastrointestinal

HMCB

Heavy metal-contaminated biomass

MMA

Monomethyl arsenic acid

NTA

Nitrilotriacetic acid

TEM

Transmission electron microscopy

UV

Ultraviolet

XRD

X-ray diffraction

References

  1. Alam MM, ALOthman ZA, Naushad M (2013) Analytical and environmental applications of polyaniline Sn(IV) tungstoarsenate and polypyrrole polyantimonic acid composite cation-exchangers. J Ind Eng Chem 19:1973–1980.  https://doi.org/10.1016/j.jiec.2013.03.006 CrossRefGoogle Scholar
  2. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881.  https://doi.org/10.1016/j.chemosphere.2013.01.075 CrossRefGoogle Scholar
  3. AL-Othman ZA, Naushad M, Inamuddin (2011) Organic-inorganic type composite cation exchanger poly-o-toluidine Zr(IV) tungstate: preparation, physicochemical characterization and its analytical application in separation of heavy metals. Chem Eng J 172:369–375.  https://doi.org/10.1016/j.cej.2011.06.018 CrossRefGoogle Scholar
  4. Arao T, Ishikawa S, Murakami M et al (2010) Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy Water Environ 8:247–257CrossRefGoogle Scholar
  5. Awasthi AK, Li J (2017) Management of electrical and electronic waste: a comparative evaluation of China and India. Renew Sust Energ Rev 76:434–447CrossRefGoogle Scholar
  6. Bagga DK, Peterson S (2001) Phytoremediation of arsenic-contaminated soil as affected by the chelating agent CDTA and different levels of soil pH. Remediation 12:77–85.  https://doi.org/10.1002/rem.1027 CrossRefGoogle Scholar
  7. Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49CrossRefGoogle Scholar
  8. Banuelos GS, Lin Z-Q, Yin X (2013) Selenium in the environment and human health. CRC Press, Boca RatonCrossRefGoogle Scholar
  9. Bañuelos GS, Arroyo I, Pickering IJ et al (2015) Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem 166:603–608CrossRefGoogle Scholar
  10. Bauddh K, Singh RP (2012) Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus Communis (L.) and Brassica Juncea (L.) from the contaminated soil. Int J Phytoremediat 14:772–785.  https://doi.org/10.1080/15226514.2011.619238 CrossRefGoogle Scholar
  11. Beattie IR, Haverkamp RG (2011) Silver and gold nanoparticles in plants: sites for the reduction to metal. Metallomics 3:628–632CrossRefGoogle Scholar
  12. Bernard S, Enayati A, Redwood L et al (2001) Autism: a novel form of mercury poisoning. [Review] [181 refs]. Med Hypotheses 56:462–471CrossRefGoogle Scholar
  13. Bian F, Zhong Z, Wu S et al (2018) Comparison of heavy metal phytoremediation in monoculture and intercropping systems of Phyllostachys praecox and Sedum plumbizincicola in polluted soil. Int J Phytoremediat 20:490–498CrossRefGoogle Scholar
  14. Bolton H, Girvin DC, Plymale AE et al (1996) Degradation of metal− nitrilotriacetate complexes by Chelatobacter heintzii. Environ Sci Technol 30:931–938CrossRefGoogle Scholar
  15. Braud A, Geoffroy V, Hoegy F et al (2010) The siderophores pyoverdine and pyochelin are involved in Pseudomonas aeruginosa resistance against metals: another biological function of these two siderophores. Environ Microbiol Rep 2:419–425CrossRefGoogle Scholar
  16. Břendová K, Tlustoš P, Száková J (2015) Can biochar from contaminated biomass be applied into soil for remediation purposes? Water Air Soil Pollut 226:193CrossRefGoogle Scholar
  17. Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493CrossRefGoogle Scholar
  18. Brooker RW, Callaghan TV (1998) The balance between positive and negative plant interactions and its relationship to environmental gradients: a model. Oikos:196–207Google Scholar
  19. Brunetti G, Ruta C, Traversa A et al (2018) Remediation of a heavy metals contaminated soil using mycorrhized and non-mycorrhized Helichrysum italicum (Roth) Don. Land Degrad Dev 29:91–104CrossRefGoogle Scholar
  20. Caliman FA, Robu BM, Smaranda C et al (2011) Soil and groundwater cleanup: benefits and limits of emerging technologies. Clean Techn Environ Policy 13:241–268CrossRefGoogle Scholar
  21. Chaney RL, Malik M, Li YM et al (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284.  https://doi.org/10.1016/S0958-1669(97)80004-3 CrossRefGoogle Scholar
  22. Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832CrossRefGoogle Scholar
  23. Conner AJ, Glare TR, Nap J-P (2003) The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. Plant J 33:19–46.  https://doi.org/10.1046/j.0960-7412.2002.001607.x CrossRefGoogle Scholar
  24. Council NR (1999) Arsenic in drinking water. National Academies Press, Washington, DCGoogle Scholar
  25. Cullen WR, Reimer KJ (2016) Arsenic is everywhere: cause for concern? Royal Society of Chemistry, CambridgeGoogle Scholar
  26. Dastyar W, Raheem A, He J, Zhao M (2019) Biofuel production using thermochemical conversion of heavy metal-contaminated biomass (HMCB) harvested from Phytoextraction process. Chem Eng J 358:759–785CrossRefGoogle Scholar
  27. De Souza MP, Pickering IJ, Walla M, Terry N (2002) Selenium assimilation and volatilization from selenocyanate-treated Indian mustard and muskgrass. Plant Physiol 128:625–633CrossRefGoogle Scholar
  28. Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228CrossRefGoogle Scholar
  29. Diels L, Spaans PH, Van Roy S et al (2003) Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria. Hydrometallurgy 71:235–241CrossRefGoogle Scholar
  30. Dimkpa CO, Merten D, Svatoš A et al (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696CrossRefGoogle Scholar
  31. Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114.  https://doi.org/10.1016/j.biotechadv.2004.10.001 CrossRefGoogle Scholar
  32. Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Saf 106:164–172CrossRefGoogle Scholar
  33. Etim EE (2012) Phytoremediation and its mechanisms: a review. Int J Environ Bioenergy 2:120–136Google Scholar
  34. Evans KM, Gatehouse JA, Lindsay WP et al (1992) Expression of the pea metallothionein-like gene PsMT A in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMT A function. Plant Mol Biol 20:1019–1028CrossRefGoogle Scholar
  35. Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122:657–666CrossRefGoogle Scholar
  36. Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213:1–6CrossRefGoogle Scholar
  37. Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5(2):47–58CrossRefGoogle Scholar
  38. Garbisu C, Hernández-Allica J, Barrutia O et al (2002) Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health 17:173–188.  https://doi.org/10.1515/REVEH.2002.17.3.173 CrossRefGoogle Scholar
  39. García G, Faz Á, Conesa HM (2003) Selection of autochthonous plant species from SE Spain for soil lead phytoremediation purposes. Water Air Soil Pollut Focus 3:243–250CrossRefGoogle Scholar
  40. Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6:18Google Scholar
  41. Gisbert C, Ros R, De Haro A et al (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445.  https://doi.org/10.1016/S0006-291X(03)00349-8 CrossRefGoogle Scholar
  42. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374CrossRefGoogle Scholar
  43. Grčman H, Vodnik D, Velikonja-Bolta Š, Leštan D (2003) Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J Environ Qual 32:500–506CrossRefGoogle Scholar
  44. Gutha Y, Munagapati VS, Naushad M, Abburi K (2015) Removal of Ni(II) from aqueous solution by Lycopersicum esculentum (Tomato) leaf powder as a low-cost biosorbent. Desalin Water Treat 54:200–208.  https://doi.org/10.1080/19443994.2014.880160 CrossRefGoogle Scholar
  45. Heaton ACP, Rugh CL, Wang N, Meagher RB (1998) Phytoremediation of mercury- and methylmercury-polluted soils using genetically engineered plants. J Soil Contam 7:497–509.  https://doi.org/10.1080/10588339891334384 CrossRefGoogle Scholar
  46. Hetland MD, Gallagher JR, Daly DJ et al (2001) Processing of plants used to phytoremediate lead-contaminated sites. In: Sixth international in situ and on site bioremediation symposium, pp 129–136Google Scholar
  47. Hossner LR, Loeppert RH, Newton RJ, Szaniszlo PJ (1998) Literature review: phytoaccumulation of chromium, uranium, and plutonium in plant systems. Amarillo National Resource Center for Plutonium, TX, USAGoogle Scholar
  48. Hovsepyan A, Greipsson S (2007) EDTA-enhanced phytoremediation of lead-contaminated soil by corn. J Plant Nutr 28(11):2037–2048.  https://doi.org/10.1080/01904160500311151 CrossRefGoogle Scholar
  49. Jain SK, Gujral GS, Jha NK, Vasudevan P (1992) Production of biogas from Azolla pinnata R. Br and Lemna minor L.: effect of heavy metal contamination. Bioresour Technol 41:273–277CrossRefGoogle Scholar
  50. Jaishankar M, Tseten T, Anbalagan N et al (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72.  https://doi.org/10.2478/intox CrossRefGoogle Scholar
  51. Jobling J, Stevens FRW (1980) Establishment of trees on regraded colliery spoil heaps. Forestry Commission, EdinburghGoogle Scholar
  52. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valkoc M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107Google Scholar
  53. Jones DL (1998) Organic acids in the rhizosphere–a critical review. Plant Soil 205:25–44CrossRefGoogle Scholar
  54. Jones PW, Williams DR (2001) Chemical speciation used to assess [S, S′]-ethylenediaminedisuccinic acid (EDDS) as a readily-biodegradable replacement for EDTA in radiochemical decontamination formulations. Appl Radiat Isot 54:587–593CrossRefGoogle Scholar
  55. Juwarkar AA, Nair A, Dubey KV et al (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:1996–2002CrossRefGoogle Scholar
  56. Kachenko AG, Singh B (2006) Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut 169:101–123CrossRefGoogle Scholar
  57. Kamal M, Ghaly AE, Mahmoud N, CoteCôté R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039.  https://doi.org/10.1016/S0160-4120(03)00091-6 CrossRefGoogle Scholar
  58. Karthik V, Sivarajasekar N, Padmanaban VC et al (2018) Biosorption of xenobiotic Reactive Black B onto metabolically inactive T. harzianum biomass: optimization and equilibrium studies. Int J Environ Sci Technol:1–12Google Scholar
  59. Khan AG, Kuek C, Chaudhry TM et al (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207CrossRefGoogle Scholar
  60. Khan MS, Sajad MA, Khan WM et al (2009a) Phytoremediation of nickel from the effluents of selected ghee industries of Khyber Pakhtunkhwa, PakistanGoogle Scholar
  61. Khan S, Farooq R, Shahbaz S et al (2009b) Health risk assessment of heavy metals for population via consumption of vegetables. World Appl Sci J 6:1602–1606Google Scholar
  62. Kopponen P, Utriainen M, Lukkari K et al (2001) Clonal differences in copper and zinc tolerance of birch in metal-supplemented soils. Environ Pollut 112:89–97CrossRefGoogle Scholar
  63. Kosolapov DB, Kuschk P, Vainshtein MB et al (2004) Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng Life Sci 4:403–411CrossRefGoogle Scholar
  64. Kulli B, Balmer M, Krebs R et al (1999) The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass. J Environ Qual 28:1699–1705CrossRefGoogle Scholar
  65. Kumar GP, Yadav SK, Thawale PR et al (2008) Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter–A greenhouse study. Bioresour Technol 99:2078–2082CrossRefGoogle Scholar
  66. Kurniawan TA, GYS C, Lo W-H, Babel S (2006) Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98CrossRefGoogle Scholar
  67. Lăcătuşu R, Răuţă C, Cârstea S, Ghelase I (1996) Soil-plant-man relationships in heavy metal polluted areas in Romania. Appl Geochem 11:105–107CrossRefGoogle Scholar
  68. Ledin S (1996) Willow wood properties, production and economy. Biomass Bioenergy 11:75–83CrossRefGoogle Scholar
  69. Liu W-J, Tian K, Jiang H et al (2012) Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example. Environ Sci Technol 46:7849–7856CrossRefGoogle Scholar
  70. Ludwig RD, McGregor RG, Blowes DW et al (2002) A permeable reactive barrier for treatment of heavy metals. Groundwater 40:59–66CrossRefGoogle Scholar
  71. Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11CrossRefGoogle Scholar
  72. Mack RN, Simberloff D, Mark Lonsdale W et al (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710CrossRefGoogle Scholar
  73. Mancuso TF (1997) Chromium as an industrial carcinogen: Part II. Chromium in human tissues. Am J Ind Med 31:140–147.  https://doi.org/10.1002/(SICI)1097-0274(19970204)31:2<140::AID-AJIM2>3.0.CO;2-3 CrossRefGoogle Scholar
  74. Marchiol L (2012) Synthesis of metal nanoparticles in living plants. Ital J Agron 7:37CrossRefGoogle Scholar
  75. Masarovičová E, Kráľová K (2012) Plant-heavy metal interaction: phytoremediation, biofortification and nanoparticles. In: Advances in selected plant physiology aspects. InTech, RijekaGoogle Scholar
  76. McIntyre T (2003) Phytoremediation of heavy metals from soils. In: Phytoremediation. Springer, pp 97–123Google Scholar
  77. Midhat L, Ouazzani N, Hejjaj A et al (2018) Phytostabilization of polymetallic contaminated soil using Medicago sativa L. in combination with powdered marble: sustainable rehabilitation. Int J Phytoremediat 20:764–772CrossRefGoogle Scholar
  78. Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78:161–168CrossRefGoogle Scholar
  79. Mizukoshi K, Nagaba M, Ohno Y et al (1975) Neurotological studies upon intoxication by organic mercury compounds. ORL 37:74–87.  https://doi.org/10.1159/000275209 CrossRefGoogle Scholar
  80. Mosoarca G, Vancea C, Popa S, Boran S (2018) Adsorption, bioaccumulation and kinetics parameters of the phytoremediation of cobalt from wastewater using Elodea canadensis. Bull Environ Contam Toxicol 100:733–739CrossRefGoogle Scholar
  81. Mudhoo A, Kumar S (2013) Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int J Environ Sci Technol 10:1383–1398CrossRefGoogle Scholar
  82. Mulligan CN, Yong RN, Gibbs BF (2001a) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207.  https://doi.org/10.1016/S0013-7952(00)00101-0 CrossRefGoogle Scholar
  83. Mulligan CN, Yong RN, Gibbs BF (2001b) An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85:145–163CrossRefGoogle Scholar
  84. Muthusaravanan S, Sivarajasekar N, Vivek JS et al (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett:1–21Google Scholar
  85. Nabi SA, Naushad M (2007) Studies of cation-exchange thermodynamics for alkaline earths and transition metal ions on a new crystalline cation-exchanger aluminium tungstate: effect of the surfactant’s concentration on distribution coefficients of metal ions. Colloid Surf A Physicochem Eng Asp 293:175–184.  https://doi.org/10.1016/j.colsurfa.2006.07.026 CrossRefGoogle Scholar
  86. Nabi SA, Naushad M (2010) A new electron exchange material Ti(IV) iodovanadate: synthesis, characterization and analytical applications. Chem Eng J 158:100–107.  https://doi.org/10.1016/j.cej.2009.12.011 CrossRefGoogle Scholar
  87. Nabi SA, Naushad M, Bushra R (2009) Synthesis and characterization of a new organic-inorganic Pb2+ selective composite cation exchanger acrylonitrile stannic(IV) tungstate and its analytical applications. Chem Eng J 152:80–87.  https://doi.org/10.1016/j.cej.2009.03.033 CrossRefGoogle Scholar
  88. Naushad M, ALOthman ZA (2015) Separation of toxic Pb2+ metal from aqueous solution using strongly acidic cation-exchange resin: analytical applications for the removal of metal ions from pharmaceutical formulation. Desalin Water Treat 53:2158–2166.  https://doi.org/10.1080/19443994.2013.862744 CrossRefGoogle Scholar
  89. Naushad M, ALOthman ZA, Sharma G, Inamuddin (2015) Kinetics, isotherm and thermodynamic investigations for the adsorption of Co(II) ion onto crystal violet modified amberlite IR-120 resin. Ionics (Kiel) 21:1453–1459.  https://doi.org/10.1007/s11581-014-1292-z CrossRefGoogle Scholar
  90. Neilson S, Rajakaruna N (2012) Roles of rhizospheric processes and plant physiology in applied phytoremediation of contaminated soils using Brassica oilseeds. In: The plant family Brassicaceae. Springer, Dordrecht, pp 313–330CrossRefGoogle Scholar
  91. Ogundiran MB, Mekwunyei NS, Adejumo SA (2018) Compost and biochar assisted phytoremediation potentials of Moringa oleifera for remediation of lead contaminated soil. J Environ Chem Eng 6:2206–2213CrossRefGoogle Scholar
  92. Paisio CE, Fernandez M, González PS et al (2018) Simultaneous phytoremediation of chromium and phenol by Lemna minuta Kunth: a promising biotechnological tool. Int J Environ Sci Technol 15:37–48CrossRefGoogle Scholar
  93. Pamukcu S, Kenneth Wittle J (1992) Electrokinetic removal of selected heavy metals from soil. Environ Prog 11:241–250CrossRefGoogle Scholar
  94. Pant D, Singh P (2014) Pollution due to hazardous glass waste. Environ Sci Pollut Res 21:2414–2436CrossRefGoogle Scholar
  95. Paramasivan T, Sivarajasekar N, Muthusaravanan S et al (2019) Graphene family materials for the removal of pesticides from water. In: A new generation material graphene: applications in water technology. Springer, Cham, pp 309–327CrossRefGoogle Scholar
  96. Patra HK, Mohanty M (2013) Phytomining: an innovative post phytoremediation management technology. Development 25:27Google Scholar
  97. Pilon-Smits EAH, de Souza MP, Hong G et al (1999) Selenium volatilization and accumulation by twenty aquatic plant species. J Environ Qual Madison 28:1011.  https://doi.org/10.2134/jeq1999.00472425002800030035x CrossRefGoogle Scholar
  98. Pivetz BE (2001) Ground water issue: phytoremediation of contaminated soil and ground water at hazardous waste sites. NATIONAL RISK MANAGEMENT RESEARCH LAB ADA OKGoogle Scholar
  99. Prasad MNV (2015) Phytoremediation crops and biofuels. In: Sustainable agriculture reviews. Springer, Cham, pp 159–261CrossRefGoogle Scholar
  100. Rahman RAA, Abou-Shanab RA, Moawad H (2008) Mercury detoxification using genetic engineered Nicotiana tabacum. Glob NEST J 10:432–438Google Scholar
  101. Rai PK (2008) Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int J Phytoremediat 10:430–439.  https://doi.org/10.1080/15226510802100606 CrossRefGoogle Scholar
  102. Raistrick A, Jennings B (1965) A history of lead mining in the Pennine. Davis Books, Newcaste upon Tyne, p 347Google Scholar
  103. Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574CrossRefGoogle Scholar
  104. Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424CrossRefGoogle Scholar
  105. Reilly C (2008) Metal contamination of food: its significance for food quality and human health. Wiley, New YorkGoogle Scholar
  106. Rockwood DL, Naidu CV, Carter DR et al (2004) Short-rotation woody crops and phytoremediation: opportunities for agroforestry? In: Agroforestry systems. Springer, Dordrecht, pp 51–63Google Scholar
  107. Ruiz-Felix MN, Kelly WJ, Balsamo RA, Satrio JA (2016) Evaluation of sugars and bio-oil production using lead contaminated switchgrass feedstock. Waste Biomass Valoriz 7:1091–1104CrossRefGoogle Scholar
  108. Saha R, Nandi R, Saha B (2011) Sources and toxicity of hexavalent chromium. J Coord Chem 64:1782–1806CrossRefGoogle Scholar
  109. San Juan MRF, Albornoz CB, Larsen K, Najle R (2018) Bioaccumulation of heavy metals in Limnobium laevigatum and Ludwigia peploides: their phytoremediation potential in water contaminated with heavy metals. Environ Earth Sci 77:404CrossRefGoogle Scholar
  110. Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798CrossRefGoogle Scholar
  111. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854CrossRefGoogle Scholar
  112. Schober SE, Mirel LB, Graubard BI et al (2006) Blood lead levels and death from all causes, cardiovascular disease, and cancer: results from the NHANES III mortality study. Environ Health Perspect 114:1538CrossRefGoogle Scholar
  113. Shekhawat GS, Arya V (2009) Biological synthesis of Ag nanoparticles through in vitro cultures of Brassica juncea C. zern. In: Advanced materials research. Zurich, Trans Tech Publ, pp 295–299Google Scholar
  114. Sheng X, He L, Wang Q et al (2008) Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155:17–22CrossRefGoogle Scholar
  115. Singhal V, Rai JPN (2003) Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Bioresour Technol 86:221–225CrossRefGoogle Scholar
  116. Sivarajasekar N (2007) Hevea brasiliensis – a biosorbent for the adsorption of Cu (II) from aqueous solutions. Carbon Lett 8:199–206CrossRefGoogle Scholar
  117. Sivarajasekar N (2014) Biosorption of cationic dyes using waste cotton seedsGoogle Scholar
  118. Sivarajasekar N, Baskar R, Balakrishnan V (2009) Biosorption of an azo dye from aqueous solutions onto Spirogyra. J Univ Chem Technol Metall 44:157–164Google Scholar
  119. Sivarajasekar N, Balasubramani K, Mohanraj N et al (2017a) Fixed-bed adsorption of atrazine onto microwave irradiated Aegle marmelos Correa fruit shell: statistical optimization, process design and breakthrough modeling. J Mol Liq 241:823–830CrossRefGoogle Scholar
  120. Sivarajasekar N, Mohanraj N, Balasubramani K et al (2017b) Optimization, equilibrium and kinetic studies on ibuprofen removal onto microwave assisted—activated Aegle marmelos correa fruit shell. Desalin Water Treat 84:48–58CrossRefGoogle Scholar
  121. Sivarajasekar N, Mohanraj N, Sivamani S et al (2017c) Comparative modeling of fluoride biosorption onto waste Gossypium hirsutum seed microwave-bichar using response surface methodology and artificial neural networks. In: Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 2017 international conference on IEEE, pp 1631–1635Google Scholar
  122. Sivarajasekar N, Mohanraj N, Sivamani S, Moorthy GI (2017d) Response surface methodology approach for optimization of lead (II) adsorptive removal by Spirogyra sp. biomass. J Environ Biotechnol Res 6:88–95Google Scholar
  123. Sivarajasekar N, Paramasivan T, Muthusaravanan S et al (2017e) Defluoridation of water using adsorbents – a concise review. J Environ Biotechnol Res 6:186–198Google Scholar
  124. Sivarajasekar N, Balasubramani K, Baskar R, Sivamani S, Ganesh Moorthy I (2018a) Eco-friendly acetaminophen sequestration using waste cotton seeds: equilibrium, optimization and validation studies. J Water Chem Technol 40:334–342CrossRefGoogle Scholar
  125. Sivarajasekar N, Baskar R (2018b) Optimization, equilibrium and kinetic studies of basic red 2 removal onto waste Gossypium hirsutum seeds. Iran J Chem Chem Eng 37:157–169Google Scholar
  126. Snyder RD (1971) Congenital mercury poisoning. N Engl J Med 284:1014–1016CrossRefGoogle Scholar
  127. Sreekrishnan TR, Tyagi RD, Blais JF, Campbell PGC (1993) Kinetics of heavy metal bioleaching from sewage sludge—I. Effects of process parameters. Water Res 27:1641–1651CrossRefGoogle Scholar
  128. Sricoth T, Meeinkuirt W, Saengwilai P et al (2018) Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments. Environ Sci Pollut Res 25:14964–14976CrossRefGoogle Scholar
  129. Su Y, Han FX, Sridhar BBM, Monts DL (2005) Phytotoxicity and phytoaccumulation of trivalent and hexavalent chromium in brake fern. Environ Toxicol Chem 24:2019–2026.  https://doi.org/10.1897/04-329R.1 CrossRefGoogle Scholar
  130. Tangahu BV, Sheikh Abdullah SR, Basri H et al (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011.  https://doi.org/10.1155/2011/939161 CrossRefGoogle Scholar
  131. Thangavel P, Subbhuraam CV (2004) Phytoextraction: role of hyperaccumulators in metal contaminated soils. Proc Indian Natl Sci Acad Part B 70:109–130Google Scholar
  132. Tiedje JM, Mason BB (1974) Biodegradation of Nitrilotriacetate (NTA) in Soils 1. Soil Sci Soc Am J 38:278–283CrossRefGoogle Scholar
  133. van der Zaal BJ, Neuteboom LW, Pinas JE et al (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1056CrossRefGoogle Scholar
  134. Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316CrossRefGoogle Scholar
  135. Venkatesh NM, Vedaraman N (2012) Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Ann Microbiol 62:85–91CrossRefGoogle Scholar
  136. Wang H, Lu S, Yao Z (2007) EDTA-enhanced phytoremediation of lead contaminated soil by Bidens maximowicziana. J Environ Sci 19:1496–1499CrossRefGoogle Scholar
  137. Weber E (2017) Invasive plant species of the world: a reference guide to environmental weeds. CABI, WallingfordCrossRefGoogle Scholar
  138. Wenger K, Kayser A, Gupta SK et al (2002) Comparison of NTA and elemental sulfur as potential soil amendments in phytoremediation. Soil Sediment Contam 11:655–672.  https://doi.org/10.1080/20025891107023 CrossRefGoogle Scholar
  139. Wiszniewska A, Hanus-Fajerska E, Muszyńska E, Ciarkowska K (2016) Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere 26:1–12CrossRefGoogle Scholar
  140. Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780.  https://doi.org/10.1016/S0045-6535(02)00232-1 CrossRefGoogle Scholar
  141. Wu LH, Luo YM, Xing XR, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric Ecosyst Environ 102:307–318CrossRefGoogle Scholar
  142. Xiaoyong HLSGQ (2006) A study on root expansibility of seven constructed wetland plants [J]. Shanghai Environ Sci 4:11Google Scholar
  143. Yan G, Viraraghavan T (2001) Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. Bioresour Technol 78:243–249CrossRefGoogle Scholar
  144. Zeng Z, Li T-Q, Zhao F et al (2013) Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. J Zhejiang Univ Sci B 14:1152–1161CrossRefGoogle Scholar
  145. Zeng P, Guo Z, Cao X et al (2018) Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. Int J Phytoremediation 20:311–320CrossRefGoogle Scholar
  146. Zhu YL (1999) Overexpression of glutathione synthetase in Brassica juncea enhances cadmium tolerance and accumulation. Plant Physiol 119:73–79CrossRefGoogle Scholar
  147. Zhu YL, Zayed AM, Qian JH et al (1999) Phytoaccumulation of trace elements by wetland plants: II. Water Hyacinth. J Environ Qual 28:339–344.  https://doi.org/10.2134/jeq1999.00472425002800010042x CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • S. Muthusaravanan
    • 1
  • N. Sivarajasekar
    • 1
  • J. S. Vivek
    • 1
  • S. Vasudha Priyadharshini
    • 1
  • T. Paramasivan
    • 1
  • Nirajan Dhakal
    • 2
  • Mu. Naushad
    • 3
  1. 1.Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of BiotechnologyKumaraguru College of TechnologyCoimbatoreIndia
  2. 2.Environmental Engineering and Water Technology DepartmentIHE Delft Institute for Water EducationDelftThe Netherlands
  3. 3.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations