Neuromuscular Disorders and Noncompaction Cardiomyopathy

  • Josef Finsterer
  • Claudia Stöllberger


Noncompaction cardiomyopathy (NCCM), also known as left ventricular hypertrabeculation (LVHT), occurs with an increased prevalence in patients with a neuromuscular disorder (NMD). The first NMD patient with LVHT was a patient with Becker muscular dystrophy, reported in 1996. Since then, LVHT was found in a number of other NMDs. The most prevalent of the NMDs are mitochondrial disorders (MIDs), myotonic dystrophy type-1 (MD1), dystrophinopathies, Barth syndrome, titinopathies, and laminopathies: The NMDs in which LVHT has been reported most frequently so far are MIDs, dystrophinopathies, Barth syndrome, and MD1. Mutated genes detected in LVHT patients with a NMD include DMD, TAZ, DTNA, mtDNA genes (ND1, tRNA(Leu), COX3, ND4), LDB3, DMPK, LMNA, AMPD1, PMP22, MYH7, CNBP, GLA, RYR1, DNAJC19, MYH7B, LAMP2, TTN, GARS, SDHD, HADHB, PLEC1, MIPEP, and POMPT2. Since NMDs present frequently with LVHT and since LVHT is associated with complications and the outcome of LVHT patients depends on the presence/absence of an NMD, it is essential that all patients with a NMD are prospectively investigated for LVHT and that all patients with LVHT are prospectively investigated for a NMD. Management of LVHT depends on the presence/absence of a NMD.


Myopathy Neuromuscular Neuropathy Cardiac involvement Noncompaction Hypertrabeculation Cardiomyopathy 




Conflicts of Interest

There are no conflicts of interest.

No funding was received.


  1. 1.
    Finsterer J. Cardio genetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction. Pediatr Cardiol. 2009;30:659–81.CrossRefGoogle Scholar
  2. 2.
    Stöllberger C, Finsterer J, Blazek G, Bittner RE. Left ventricular non-compaction in a patient with Becker’s muscular dystrophy. Heart. 1996;76:380.CrossRefGoogle Scholar
  3. 3.
    Kimura K, Takenaka K, Ebihara A, Uno K, Morita H, Nakajima T, Ozawa T, Aida I, Yonemochi Y, Higuchi S, Motoyoshi Y, Mikata T, Uchida I, Ishihara T, Komori T, Kitao R, Nagata T, Takeda S, Yatomi Y, Nagai R, Komuro I. Prognostic impact of left ventricular noncompaction in patients with Duchenne/Becker muscular dystrophy–prospective multicenter cohort study. Int J Cardiol. 2013;168:1900–4.CrossRefGoogle Scholar
  4. 4.
    Bleyl SB, Mumford BR, Thompson V, Carey JC, Pysher TJ, Chin TK, Ward K. Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am J Hum Genet. 1997;61:868–72.CrossRefGoogle Scholar
  5. 5.
    Finsterer J, Stöllberger C. Hypertrabeculated left ventricle in mitochondriopathy. Heart. 1998;80:632.CrossRefGoogle Scholar
  6. 6.
    Ichida F, Tsubata S, Bowles KR, Haneda N, Uese K, Miyawaki T, Dreyer WJ, Messina J, Li H, Bowles NE, Towbin JA. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation. 2001;103:1256–63.CrossRefGoogle Scholar
  7. 7.
    Xing Y, Ichida F, Matsuoka T, Isobe T, Ikemoto Y, Higaki T, Tsuji T, Haneda N, Kuwabara A, Chen R, Futatani T, Tsubata S, Watanabe S, Watanabe K, Hirono K, Uese K, Miyawaki T, Bowles KR, Bowles NE, Towbin JA. Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol Genet Metab. 2006;88:71–7.CrossRefGoogle Scholar
  8. 8.
    Finsterer J, Stöllberger C, Kopsa W. Noncompaction on cardiac MRI in a patient with nail-patella syndrome and mitochondriopathy. Cardiology. 2003;100:48–9.CrossRefGoogle Scholar
  9. 9.
    Vatta M, Mohapatra B, Jimenez S, Sanchez X, Faulkner G, Perles Z, Sinagra G, Lin JH, Vu TM, Zhou Q, Bowles KR, Di Lenarda A, Schimmenti L, Fox M, Chrisco MA, Murphy RT, McKenna W, Elliott P, Bowles NE, Chen J, Valle G, Towbin JA. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol. 2003;42:2014–27.CrossRefGoogle Scholar
  10. 10.
    Xi Y, Ai T, De Lange E, Li Z, Wu G, Brunelli L, Kyle WB, Turker I, Cheng J, Ackerman MJ, Kimura A, Weiss JN, Qu Z, Kim JJ, Faulkner G, Vatta M. Loss of function of hNav1.5 by a ZASP1 mutation associated with intraventricular conduction disturbances in left ventricular noncompaction. Circ Arrhythm Electrophysiol. 2012;5:1017–26.CrossRefGoogle Scholar
  11. 11.
    Hachiya A, Motoki N, Akazawa Y, Matsuzaki S, Hirono K, Hata Y, Nishida N, Ichida F, Koike K. Left ventricular non-compaction revealed by aortic regurgitation due to Kawasaki disease in a boy with LDB3 mutation. Pediatr Int. 2016;58:797–800.CrossRefGoogle Scholar
  12. 12.
    Stöllberger C, Winkler-Dworak M, Blazek G, Finsterer J. Left ventricular hypertrabeculation/noncompaction with and without neuromuscular disorders. Int J Cardiol. 2004;97:89–92.CrossRefGoogle Scholar
  13. 13.
    Choudhary P, Nandakumar R, Greig H, Broadhurst P, Dean J, Puranik R, Celermajer DS, Hillis GS. Structural and electrical cardiac abnormalities are prevalent in asymptomatic adults with myotonic dystrophy. Heart. 2016;102:1472–8.CrossRefGoogle Scholar
  14. 14.
    Finsterer J, Stöllberger C, Wegmann R, Janssen LA. Acquired left ventricular hypertrabeculation/noncompaction in myotonic dystrophy type 1. Int J Cardiol. 2009;137:310–3.CrossRefGoogle Scholar
  15. 15.
    Sá MI, Cabral S, Costa PD, Coelho T, Freitas M, Torres S, Gomes JL. Cardiac involveent in type 1 myotonic dystrophy. Rev Port Cardiol. 2007;26:829–40.PubMedGoogle Scholar
  16. 16.
    Finsterer J, Stöllberger C, Kopsa W, Jaksch M. Wolff-Parkinson-White syndrome and isolated left ventricular abnormal trabeculation as a manifestation of Leber’s hereditary optic neuropathy. Can J Cardiol. 2001;17:464–6.PubMedGoogle Scholar
  17. 17.
    Finsterer J, Stöllberger C, Michaela J. Familial left ventricular hypertrabeculation in two blind brothers. Cardiovasc Pathol. 2002;11:146–8.CrossRefGoogle Scholar
  18. 18.
    Hermida-Prieto M, Monserrat L, Castro-Beiras A, Laredo R, Soler R, Peteiro J, Rodríguez E, Bouzas B, Alvarez N, Muñiz J, Crespo-Leiro M. Familial dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene mutations. Am J Cardiol. 2004;94:50–4.CrossRefGoogle Scholar
  19. 19.
    Liu Z, Shan H, Huang J, Li N, Hou C, Pu J. A novel lamin A/C gene missense mutation (445 V > E) in immunoglobulin-like fold associated with left ventricular non-compaction. Europace. 2016;18:617–22.CrossRefGoogle Scholar
  20. 20.
    Finsterer J, Schoser B, Stöllberger C. Myoadenylate-deaminase gene mutation associated with left ventricular hypertrabeculation/non-compaction. Acta Cardiol. 2004;59:453–6.CrossRefGoogle Scholar
  21. 21.
    Finsterer J, Gelpi E, Stöllberger C. Left ventricular hypertrabeculation/noncompaction as a cardiac manifestation of Duchenne muscular dystrophy under non-invasive positive-pressure ventilation. Acta Cardiol. 2005;60:445–8.CrossRefGoogle Scholar
  22. 22.
    Corrado G, Checcarelli N, Santarone M, Stollberger C, Finsterer J. Left ventricular hypertrabeculation/noncompaction with PMP22 duplication-based Charcot-Marie-Tooth disease type 1A. Cardiology. 2006;105:142–5.CrossRefGoogle Scholar
  23. 23.
    Finsterer J, Brandau O, Stöllberger C, Wallefeld W, Laing NG, Laccone F. Distal myosin heavy chain-7 myopathy due to the novel transition c.5566G>A (p.E1856K) with high interfamilial cardiac variability and putative anticipation. Neuromuscul Disord. 2014;24:721–5.CrossRefGoogle Scholar
  24. 24.
    Ruggiero L, Fiorillo C, Gibertini S, De Stefano F, Manganelli F, Iodice R, Vitale F, Zanotti S, Galderisi M, Mora M, Santoro L. A rare mutation in MYH7 gene occurs with overlapping phenotype. Biochem Biophys Res Commun. 2015;457:262–6.CrossRefGoogle Scholar
  25. 25.
    Alter P, Maisch B. Non-compaction cardiomyopathy in an adult with hereditary spherocytosis. Eur J Heart Fail. 2007;9:98–9.CrossRefGoogle Scholar
  26. 26.
    Wahbi K, Meune C, Bassez G, Laforêt P, Vignaux O, Marmursztejn J, Bécane HM, Eymard B, Duboc D. Left ventricular non-compaction in a patient with myotonic dystrophy type 2. Neuromuscul Disord. 2008;18:331–3.CrossRefGoogle Scholar
  27. 27.
    Thevathasan W, Squier W, MacIver DH, Hilton DA, Fathers E, Hilton-Jones D. Oculopharyngodistal myopathy–a possible association with cardiomyopathy. Neuromuscul Disord. 2011;21:121–5.CrossRefGoogle Scholar
  28. 28.
    Lee YC, Chang CJ, Bali D, Chen YT, Yan YT. Glycogen-branching enzyme deficiency leads to abnormal cardiac development: novel insights into glycogen storage disease IV. Hum Mol Genet. 2011;20:455–65.CrossRefGoogle Scholar
  29. 29.
    Azevedo O, Gaspar P, Sá Miranda C, Cunha D, Medeiros R, Lourenço A. Left ventricular noncompaction in a patient with fabry disease: overdiagnosis, morphological manifestation of fabry disease or two unrelated rare conditions in the same patient. Cardiology. 2011;119:155–9.CrossRefGoogle Scholar
  30. 30.
    Martins E, Pinho T, Carpenter S, Leite S, Garcia R, Madureira A, Oliveira JP. Histopathological evidence of Fabry disease in a female patient with left ventricular noncompaction. Rev Port Cardiol. 2014;33:565.e1–6.CrossRefGoogle Scholar
  31. 31.
    Finsterer J, Stöllberger C, Vlckova Z, Gencik M. On the edge of noncompaction: minimally manifesting Duchenne carrier due to the dystrophin mutation n.2867A>C. Int J Cardiol. 2013;165:e18–20.CrossRefGoogle Scholar
  32. 32.
    Şimşek Z, Açar G, Akçakoyun M, Esen Ö, Emiroğlu Y, Esen AM. Left ventricular noncompaction in a patient with multiminicore disease. J Cardiovasc Med. 2012;13:660–2.CrossRefGoogle Scholar
  33. 33.
    Cosson L, Toutain A, Simard G, Kulik W, Matyas G, Guichet A, Blasco H, Maakaroun-Vermesse Z, Vaillant MC, Le Caignec C, Chantepie A, Labarthe F. Barth syndrome in a female patient. Mol Genet Metab. 2012;106:115–20.CrossRefGoogle Scholar
  34. 34.
    Ojala T, Polinati P, Manninen T, Hiippala A, Rajantie J, Karikoski R, Suomalainen A, Tyni T. New mutation of mitochondrial DNAJC19 causing dilated and noncompaction cardiomyopathy, anemia, ataxia, and male genital anomalies. Pediatr Res. 2012;72:432–7.CrossRefGoogle Scholar
  35. 35.
    Esposito T, Sampaolo S, Limongelli G, Varone A, Formicola D, Diodato D, Farina O, Napolitano F, Pacileo G, Gianfrancesco F, Di Iorio G. Digenic mutational inheritance of the integrin alpha 7 and the myosin heavy chain 7B genes causes congenital myopathy with left ventricular non-compact cardiomyopathy. Orphanet J Rare Dis. 2013;8:91. Scholar
  36. 36.
    Van Der Starre P, Deuse T, Pritts C, Brun C, Vogel H, Oyer P. Late profound muscle weakness following heart transplantation due to Danon disease. Muscle Nerve. 2013;47:135–7.CrossRefGoogle Scholar
  37. 37.
    Liu S, Bai Y, Huang J, Zhao H, Zhang X, Hu S, Wei Y. Do mitochondria contribute to left ventricular non-compaction cardiomyopathy? New findings from myocardium of patients with left ventricular non-compaction cardiomyopathy. Mol Genet Metab. 2013;109:100–6.CrossRefGoogle Scholar
  38. 38.
    Wang J, Zhu Q, Kong X, Hu B, Shi H, Liang B, Zhou M, Cao F. A combination of left ventricular hypertrabeculation/noncompaction and muscular dystrophy in a stroke patient. Int J Cardiol. 2014;174:e68–71.CrossRefGoogle Scholar
  39. 39.
    Miszalski-Jamka K, Jefferies JL, Mazur W, Głowacki J, Hu J, Lazar M, Gibbs RA, Liczko J, Kłyś J, Venner E, Muzny DM, Rycaj J, Białkowski J, Kluczewska E, Kalarus Z, Jhangiani S, Al-Khalidi H, Kukulski T, Lupski JR, Craigen WJ, Bainbridge MN. Novel genetic triggers and genotype-phenotype correlations in patients with left ventricular noncompaction. Circ Cardiovasc Genet. 2017;10:e001763. Scholar
  40. 40.
    Chauveau C, Bonnemann CG, Julien C, Kho AL, Marks H, Talim B, Maury P, Arne-Bes MC, Uro-Coste E, Alexandrovich A, Vihola A, Schafer S, Kaufmann B, Medne L, Hübner N, Foley AR, Santi M, Udd B, Topaloglu H, Moore SA, Gotthardt M, Samuels ME, Gautel M, Ferreiro A. Recessive TTN truncating mutations define novel forms of core myopathy with heart disease. Hum Mol Genet. 2014;23:980–91.CrossRefGoogle Scholar
  41. 41.
    Hastings R, de Villiers CP, Hooper C, Ormondroyd L, Pagnamenta A, Lise S, Salatino S, Knight SJ, Taylor JC, Thomson KL, Arnold L, Chatziefthimiou SD, Konarev PV, Wilmanns M, Ehler E, Ghisleni A, Gautel M, Blair E, Watkins H, Gehmlich K. Combination of whole genome sequencing, linkage, and functional studies implicates a missense mutation in titin as a cause of autosomal dominant cardiomyopathy with features of left ventricular noncompaction. Circ Cardiovasc Genet. 2016;9:426–35.CrossRefGoogle Scholar
  42. 42.
    Egan KR, Ralphe JC, Weinhaus L, Maginot KR. Just sinus bradycardia or something more serious? Case Rep Pediatr. 2013;2013:736164. Scholar
  43. 43.
    McMillan HJ, Schwartzentruber J, Smith A, Lee S, Chakraborty P, Bulman DE, Beaulieu CL, Majewski J, Boycott KM, Geraghty MT. Compound heterozygous mutations in glycyl-tRNA synthetase are a proposed cause of systemic mitochondrial disease. BMC Med Genet. 2014;15:36.CrossRefGoogle Scholar
  44. 44.
    Alston CL, Ceccatelli Berti C, Blakely EL, Oláhová M, He L, McMahon CJ, Olpin SE, Hargreaves IP, Nolli C, McFarland R, Goffrini P, O’Sullivan MJ, Taylor RW. A recessive homozygous p.Asp92Gly SDHD mutation causes prenatal cardiomyopathy and a severe mitochondrial complex II deficiency. Hum Genet. 2015;134:869–79.CrossRefGoogle Scholar
  45. 45.
    Jain-Ghai S, Cameron JM, Al Maawali A, Blaser S, MacKay N, Robinson B, Raiman J. Complex II deficiency–a case report and review of the literature. Am J Med Genet A. 2013;161A:285–94.CrossRefGoogle Scholar
  46. 46.
    Ojala T, Nupponen I, Saloranta C, Sarkola T, Sekar P, Breilin A, Tyni T. Fetal left ventricular noncompaction cardiomyopathy and fatal outcome due to complete deficiency of mitochondrial trifunctional protein. Eur J Pediatr. 2015;174:1689–92.CrossRefGoogle Scholar
  47. 47.
    Villa CR, Ryan TD, Collins JJ, Taylor MD, Lucky AW, Jefferies JL. Left ventricular non-compaction cardiomyopathy associated with epidermolysis bullosa simplex with muscular dystrophy and PLEC1 mutation. Neuromuscul Disord. 2015;25:165–8.CrossRefGoogle Scholar
  48. 48.
    Eldomery MK, Akdemir ZC, Vögtle FN, Charng WL, Mulica P, Rosenfeld JA, Gambin T, Gu S, Burrage LC, Al Shamsi A, Penney S, Jhangiani SN, Zimmerman HH, Muzny DM, Wang X, Tang J, Medikonda R, Ramachandran PV, Wong LJ, Boerwinkle E, Gibbs RA, Eng CM, Lalani SR, Hertecant J, Rodenburg RJ, Abdul-Rahman OA, Yang Y, Xia F, Wang MC, Lupski JR, Meisinger C, Sutton VR. MIPEP recessive variants cause a syndrome of left ventricular non-compaction, hypotonia, and infantile death. Genome Med. 2016;8:106.CrossRefGoogle Scholar
  49. 49.
    Abdullah S, Hawkins C, Wilson G, Yoon G, Mertens L, Carter MT, Guerin A. Noncompaction cardiomyopathy in an infant with Walker-Warburg syndrome. Am J Med Genet A. 2017;173:3082–6.CrossRefGoogle Scholar
  50. 50.
    Budde BS, Binner P, Waldmüller S, Höhne W, Blankenfeldt W, Hassfeld S, Brömsen J, Dermintzoglou A, Wieczorek M, May E, Kirst E, Selignow C, Rackebrandt K, Müller M, Goody RS, Vosberg HP, Nürnberg P, Scheffold T. Noncompaction of the ventricular myocardium is associated with a de novo mutation in the beta-myosin heavy chain gene. PLoS One. 2007;2:e1362.CrossRefGoogle Scholar
  51. 51.
    Mavrogeni SI, Markousis-Mavrogenis G, Papavasiliou A, Papadopoulos G, Kolovou G. Cardiac involvement in Duchenne muscular dystrophy and related dystrophinopathies. Methods Mol Biol. 2018;1687:31–42.CrossRefGoogle Scholar
  52. 52.
    Finsterer J, Stöllberger C, Wexberg P, Schukro C. Left ventricular hypertrabeculation/non-compaction in a Duchenne/Becker muscular dystrophy carrier with epilepsy. Int J Cardiol. 2012;162:e3–5.CrossRefGoogle Scholar
  53. 53.
    Statile CJ, Taylor MD, Mazur W, Cripe LH, King E, Pratt J, Benson DW, Hor KN. Left ventricular noncompaction in Duchenne muscular dystrophy. J Cardiovasc Magn Reson. 2013;15:67. Scholar
  54. 54.
    Schelhorn J, Schoenecker A, Neudorf U, Schemuth H, Nensa F, Nassenstein K, Forsting M, Schara U, Schlosser T. Cardiac pathologies in female carriers of Duchenne muscular dystrophy assessed by cardiovascular magnetic resonance imaging. Eur Radiol. 2015;25:3066–72.CrossRefGoogle Scholar
  55. 55.
    Ferreira C, Thompson R, Vernon H. Barth syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, Amemiya A, editors. GeneReviews®. Seattle: University of Washington; 2014.Google Scholar
  56. 56.
    Ronvelia D, Greenwood J, Platt J, Hakim S, Zaragoza MV. Intrafamilial variability for novel TAZ gene mutation: Barth syndrome with dilated cardiomyopathy and heart failure in an infant and left ventricular noncompaction in his great-uncle. Mol Genet Metab. 2012;107:428–32.CrossRefGoogle Scholar
  57. 57.
    Thiels C, Fleger M, Huemer M, Rodenburg RJ, Vaz FM, Houtkooper RH, Haack TB, Prokisch H, Feichtinger RG, Lücke T, Mayr JA, Wortmann SB. Atypical clinical presentations of TAZ mutations: an underdiagnosed cause of growth retardation? JIMD Rep. 2016;29:89–93.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Wang C, Hata Y, Hirono K, Takasaki A, Ozawa SW, Nakaoka H, Saito K, Miyao N, Okabe M, Ibuki K, Nishida N, Origasa H, Yu X, Bowles NE, Ichida F, LVNC Study Collaborators. A Wide and specific spectrum of genetic variants and genotype-phenotype correlations revealed by next-generation sequencing in patients with left ventricular noncompaction. J Am Heart Assoc. 2017;6(9):e006210. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Pignatelli RH, McMahon CJ, Dreyer WJ, Denfield SW, Price J, Belmont JW, Craigen WJ, Wu J, El Said H, Bezold LI, Clunie S, Fernbach S, Bowles NE, Towbin JA. Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation. 2003;108:2672–8.CrossRefGoogle Scholar
  60. 60.
    Spencer CT, Bryant RM, Day J, Gonzalez IL, Colan SD, Thompson WR, Berthy J, Redfearn SP, Byrne BJ. Cardiac and clinical phenotype in Barth syndrome. Pediatrics. 2006;118:e337–46.CrossRefGoogle Scholar
  61. 61.
    Cao Q, Shen Y, Liu X, Yu X, Yuan P, Wan R, Liu X, Peng X, He W, Pu J, Hong K. Phenotype and functional analyses in a transgenic mouse model of left ventricular noncompaction caused by a DTNA mutation. Int Heart J. 2017;58:939–47.CrossRefGoogle Scholar
  62. 62.
    Tang S, Batra A, Zhang Y, Ebenroth ES, Huang T. Left ventricular noncompaction is associated with mutations in the mitochondrial genome. Mitochondrion. 2010;10:350–7.CrossRefGoogle Scholar
  63. 63.
    Zarrouk Mahjoub S, Mehri S, Ourda F, Boussaada R, Mechmeche R, Arab SB, Finsterer J. Transition m.3308T>C in the ND1 gene is associated with left ventricular hypertrabeculation/noncompaction. Cardiology. 2011;118:153–8.CrossRefGoogle Scholar
  64. 64.
    Limongelli G, Tome-Esteban M, Dejthevaporn C, Rahman S, Hanna MG, Elliott PM. Prevalence and natural history of heart disease in adults with primary mitochondrial respiratory chain disease. Eur J Heart Fail. 2010;12:114–21.CrossRefGoogle Scholar
  65. 65.
    Finsterer J, Stöllberger C, Steger C, Cozzarini W. Complete heart block associated with noncompaction, nail-patella syndrome, and mitochondrial myopathy. J Electrocardiol. 2007;40:352–4.CrossRefGoogle Scholar
  66. 66.
    MIPEP. Wikipedia. Accessed Jan 2018.
  67. 67.
    Davili Z, Johar S, Hughes C, Kveselis D, Hoo J. Succinate dehydrogenase deficiency associated with dilated cardiomyopathy and ventricular noncompaction. Eur J Pediatr. 2007;166:867–70.CrossRefGoogle Scholar
  68. 68.
    Wang J, Kong X, Han P, Hu B, Cao F, Liu Y, Zhu Q. Combination of mitochondrial myopathy and biventricular hypertrabeculation/noncompaction. Neuromuscul Disord. 2016;26:165–9.CrossRefGoogle Scholar
  69. 69.
    Scaglia F, Towbin JA, Craigen WJ, Belmont JW, Smith EO, Neish SR, Ware SM, Hunter JV, Fernbach SD, Vladutiu GD, Wong LJ, Vogel H. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics. 2004;114:925–31.CrossRefGoogle Scholar
  70. 70.
    Yaplito-Lee J, Weintraub R, Jamsen K, Chow CW, Thorburn DR, Boneh A. Cardiac manifestations in oxidative phosphorylation disorders of childhood. J Pediatr. 2007;150:407–11.CrossRefGoogle Scholar
  71. 71.
    Dhar R, Reardon W, McMahon CJ. Biventricular non-compaction hypertrophic cardiomyopathy in association with congenital complete heart block and type I mitochondrial complex deficiency. Cardiol Young. 2015;25:1019–21.CrossRefGoogle Scholar
  72. 72.
    Stöllberger C, Blazek G, Gessner M, Bichler K, Wegner C, Finsterer J. Neuromuscular comorbidity, heart failure, and atrial fibrillation as prognostic factors in left ventricular hypertrabeculation/noncompaction. Herz. 2015;40:906–11.CrossRefGoogle Scholar
  73. 73.
    Worman HJ. Cell signaling abnormalities in cardiomyopathy caused by lamin A/C gene mutations. Biochem Soc Trans. 2017;46(1):37–42. Scholar
  74. 74.
    Rankin J, Auer-Grumbach M, Bagg W, Colclough K, Nguyen TD, Fenton-May J, Hattersley A, Hudson J, Jardine P, Josifova D, Longman C, McWilliam R, Owen K, Walker M, Wehnert M, Ellard S. Extreme phenotypic diversity and nonpenetrance in families with the LMNA gene mutation R644C. Am J Med Genet A. 2008;146A:1530–42.CrossRefGoogle Scholar
  75. 75.
    Parent JJ, Towbin JA, Jefferies JL. Left ventricular noncompaction in a family with lamin A/C gene mutation. Tex Heart Inst J. 2015;42:73–6.CrossRefGoogle Scholar
  76. 76.
    Sedaghat-Hamedani F, Haas J, Zhu F, Geier C, Kayvanpour E, Liss M, Lai A, Frese K, Pribe-Wolferts R, Amr A, Li DT, Samani OS, Carstensen A, Bordalo DM, Müller M, Fischer C, Shao J, Wang J, Nie M, Yuan L, Haßfeld S, Schwartz C, Zhou M, Zhou Z, Shu Y, Wang M, Huang K, Zeng Q, Cheng L, Fehlmann T, Ehlermann P, Keller A, Dieterich C, Streckfuß-Bömeke K, Liao Y, Gotthardt M, Katus HA, Meder B. Clinical genetics and outcome of left ventricular non-compaction cardiomyopathy. Eur Heart J. 2017;38:3449–60.CrossRefGoogle Scholar
  77. 77.
    Fiorillo C, Astrea G, Savarese M, Cassandrini D, Brisca G, Trucco F, Pedemonte M, Trovato R, Ruggiero L, Vercelli L, D’Amico A, Tasca G, Pane M, Fanin M, Bello L, Broda P, Musumeci O, Rodolico C, Messina S, Vita GL, Sframeli M, Gibertini S, Morandi L, Mora M, Maggi L, Petrucci A, Massa R, Grandis M, Toscano A, Pegoraro E, Mercuri E, Bertini E, Mongini T, Santoro L, Nigro V, Minetti C, Santorelli FM, Bruno C, Italian Network on Congenital Myopathies. MYH7-related myopathies: clinical, histopathological and imaging findings in a cohort of Italian patients. Orphanet J Rare Dis. 2016;11:91. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Tian T, Wang J, Wang H, Sun K, Wang Y, Jia L, Zou Y, Hui R, Zhou X, Song L. A low prevalence of sarcomeric gene variants in a Chinese cohort with left ventricular non-compaction. Heart Vessel. 2015;30:258–64.CrossRefGoogle Scholar
  79. 79.
    Finsterer J, Rudnik-Schöneborn S. Myotonic dystrophies: clinical presentation, pathogenesis, diagnostics and therapy. Fortschr Neurol Psychiatr. 2015;83:9–17.CrossRefGoogle Scholar
  80. 80.
    Münch G, Bölck B, Sugaru A, Brixius K, Bloch W, Schwinger RH. Increased expression of isoform 1 of the sarcoplasmic reticulum Ca(2+)-release channel in failing human heart. Circulation. 2001;103:2739–44.CrossRefGoogle Scholar
  81. 81.
    Finsterer J, Ramaciotti C, Wang CH, Wahbi K, Rosenthal D, Duboc D, Melacini P. Cardiac findings in congenital muscular dystrophies. Pediatrics. 2010;126:538–45.CrossRefGoogle Scholar
  82. 82.
    Stöllberger C, Blazek G, Gessner M, Bichler K, Wegner C, Finsterer J. Age-dependency of cardiac and neuromuscular findings in adults with left ventricular hypertrabeculation/noncompaction. Am J Cardiol. 2015;115:1287–92.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Josef Finsterer
    • 1
  • Claudia Stöllberger
    • 2
  1. 1.Krankenanstalt Rudolfstiftung, Messerli InstituteViennaAustria
  2. 2.2nd Medical Department with Cardiology and Intensive Care MedicineKrankenanstalt RudolfstiftungViennaAustria

Personalised recommendations