The Frontiers of Neurosurgery

  • Mauro A. T. Ferreira


Neurological surgery is a rapidly evolving medical field. Although relatively new, this medical specialty has experienced an unprecedented technological development. As we live the so-called fourth industrial revolution, neurosurgery seems to be following this revolution closely. It consists of robotics, artificial intelligence, nanotechnology, extensive study of epigenetics, tridimensional printing, big computer data, and automated machines, among others. This fascinating era has been reviewed in light of the fourth human revolution. The chapter is divided into various topics corresponding to different neurosurgical fields. Many recent advancements are presented, as well as what might be expected for doctors and patients. This chapter is based on current medical and technical literature, as we present today’s developments. Some topics allow us to predict what may be expected for us in the near future, since knowledge and technology have never developed so quickly.


Technology Medicine Neurosurgery Genetics Epigenetics Robotics in medicine Nanotechnology Artificial intelligence Watson computer Virtual reality Medical and neurosurgical development 



The author would like to express his gratitute for the input and feedback from Dr. Robert F, Spetzler, from the Barrow Neurological Institute, Phoenix, AZ.

Suggested Readings and References

  1. 1.
    Burkhardt JK, Zinn PO, Bozinov O, et al. Neurosurgical education in Europe and the United States of America. Neurosurg Rev. 2010;33(4):409–17.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Schwab K. The fourth industrial revolution. New York: Crown Business, Crown Publishing Group; 2016.Google Scholar
  3. 3.
    D’Andrea G, Trillo G, Picotti V, Raco A. Functional Magnetic Resonance Imaging (fMRI), pre-intraoperative tractography in neurosurgery: the experience of Sant’ Andrea Rome University Hospital. Acta Neurochir Suppl. 2017;124:241–50.PubMedCrossRefGoogle Scholar
  4. 4.
    D’Andrea G, Familiari P, Di Lauro A, et al. Safe resection of gliomas of the dominant angular gyrus availing of preoperative FMRI and intraoperative DTI: preliminary series and surgical technique. World Neurosurg. 2016;87:627–39.PubMedCrossRefGoogle Scholar
  5. 5.
    Nakagawa S, Murai Y, Matano F, et al. Evaluation video angiography of patency after vascular anastomosis using quantitative evaluation of visualization time in indocyanine green. World Neurosurg. 2018;110:e699–709.PubMedCrossRefGoogle Scholar
  6. 6.
    Roessler K, Krawagna M, Dörfler A, et al. Essentials in intraoperative indocyanine green videoangiography assessment for intracranial aneurysm surgery: conclusions from 295 consecutively clipped aneurysms and review of the literature. Neurosurg Focus. 2014;36(2):E7.PubMedCrossRefGoogle Scholar
  7. 7.
    Wright JM, Huang CL, Sharma R, et al. Cardiac standstill and circulatory flow arrest in surgical treatment of intracranial aneurysms: a historical review. Neurosurg Focus. 2014;36(4):E10.PubMedCrossRefGoogle Scholar
  8. 8.
    Intarakhao P, Thiarawat P, Rezai Jahromi B, et al. Adenosine-induced cardiac arrest as an alternative to temporary clipping during intracranial aneurysm surgery. J Neurosurg. 2018;129(3):684–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Coelho G, Chaves TMF, Goes AF, et al. Multimaterial 3D printing preoperative planning for frontoethmoidal meningoencephalocele surgery. Childs Nerv Syst. 2017;
  10. 10.
    Govsa F, Karakas AB, Ozer MA, Eraslan C. Development of life-size patient-specific 3D-printed Dural venous models for preoperative planning. World Neurosurg. 2018;110:e141–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Choque-Velasquez J, Colasanti R, Collan J, et al. Virtual reality glasses and “Eye-hands blind technique” for microsurgical training in Neurosurgery. World Neurosurg. 2018;112:126–30. pii: S1878–8750(18)30110–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Gmeiner M, Dirnberger J, Fenz W, et al. Virtual cerebral aneurysm clipping with real-time haptic force feedback in neurosurgical education. World Neurosurg. 2018;112:e313–23. pii: S1878–8750(18)30082–2.PubMedCrossRefGoogle Scholar
  13. 13.
    Rhoton AL Jr. Cranial anatomy and surgical approaches. The Congress of Neurological Surgeons ed. Schaumberg; 2003.Google Scholar
  14. 14.
    Tang Y, Sun W, Toga AW, et al. A probabilistic atlas of human brainstem pathways based on connectome imaging data. NeuroImage. 2018;169:227–39.PubMedCrossRefGoogle Scholar
  15. 15.
    Abdallah CG, Averill LA, Collins KA, et al. Ketamine treatment and global brain connectivity in major depression. Neuropsychopharmacology. 2017;42(6):1210–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Li T, Wang Q, Zhang J, et al. Brain-wide analysis of functional connectivity in first-episode and chronic stages of schizophrenia. Schizophr Bull. 2017;43(2):436–48.PubMedGoogle Scholar
  17. 17.
    Lu FM, Dai J, Couto TA, et al. Diffusion tensor imaging tractography reveals disrupted white matter structural connectivity network in healthy adults with insomnia symptoms. Front Hum Neurosci. 2017;11:583.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ji GJ, Yu Y, Miao HH, Wang ZJ, Tang YL, Liao W. Decreased network efficiency in benign epilepsy with centrotemporal spikes. Radiology. 2017;283(1):186–94.PubMedCrossRefGoogle Scholar
  19. 19.
    Whelan CD, Altmann A, Botía JA, et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain. 2018;141(2):391–408.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    T Vu A, Jamison K, Glasser MF, et al. Tradeoffs in pushing the spatial resolution of fMRI for the 7T human connectome project. NeuroImage. 2017;154:23–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Bari AA, Thum J, Babayan D, Lozano AM. Current and expected advances in deep brain stimulation for movement disorders. Prog Neurol Surg. 2018;33:222–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Martinez-Ramirez D, Jimenez-Shahed J, et al. Efficacy and safety of deep brain stimulation in Tourette syndrome: the international Tourette syndrome deep brain stimulation public database and registry. JAMA Neurol. 2018;75(3):353–9. Scholar
  23. 23.
    Lozano CS, Tam J, Lozano AM. The changing landscape of surgery for Parkinson’s disease. Mov Disord. 2018;33(1):36–47.PubMedCrossRefGoogle Scholar
  24. 24.
    Bari AA, Thum J, Babayan D, Lozano AM. Current and expected advances in deep brain stimulation for movement disorders. Prog Neurol Surg. 2018;33:222–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Elias GJB, Namasivayam AA, Lozano AM. Deep brain stimulation for stroke: current uses and future directions. Brain Stimul. 2018;11(1):3–28.PubMedCrossRefGoogle Scholar
  26. 26.
    Beckett LA, Harvey DJ, Gamst A, et al. The Alzheimer’s disease neuroimaging initiative: annual change in biomarkers and clinical outcomes. Alzheimers Dement. 2010;6(3):257–64.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ponce FA, Asaad WF, Foote KD, et al. Bilateral deep brain stimulation of the fornix for Alzheimer’s disease: surgical safety in the advance trial. J Neurosurg. 2016;125(1):75–84.PubMedCrossRefGoogle Scholar
  28. 28.
    Dalton B, Bartholdy S, Campbell IC, Schmidt U. Neurostimulation in clinical and sub-clinical eating disorders: a systematic update of the literature. Curr Neuropharmacol. 2018;16(8):1174–92. Scholar
  29. 29.
    Lipsman N, Lam E, Volpini M, et al. Deep brain stimulation of the subcallosal cingulate for treatment-refractory anorexia nervosa: 1 year follow-up of an open-label trial. Lancet Psychiatry. 2017;4(4):285–94.PubMedCrossRefGoogle Scholar
  30. 30.
    de Oliveira Souza C, de Lima-Pardini AC, Coelho DB, et al. Peduncolopontine DBS improves balance in progressive supranuclear palsy: instrumental analysis. Clin Neurophysiol. 2016;127(11):3470–1.PubMedCrossRefGoogle Scholar
  31. 31.
    Thevathasan W, Debu B, Aziz T, et al. Pedunculopontine nucleus deep brain stimulation in Parkinson’s disease: a clinical review. Mov Disord. 2018;33(1):10–20.PubMedCrossRefGoogle Scholar
  32. 32.
    Lizarraga KJ, Gorgulho A, Chen W, De Salles AA. Molecular imaging of movement disorders. World J Radiol. 2016;8(3):226–39.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Spetzler RF, Zabramski JM, McDougall CG, et al. Analysis of saccular aneurysms in the Barrow Ruptured Aneurysm Trial. J Neurosurg. 2018;128(1):120–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Spetzler RF, McDougall CG, Zabramski JM, et al. The Barrow Ruptured Aneurysm Trial: 6-year results. J Neurosurg. 2015;123(3):609–17.PubMedCrossRefGoogle Scholar
  35. 35.
    Bijlenga P, Gondar R, Schilling S, et al. PHASES score for the management of intracranial aneurysm a cross-sectional population-based retrospective study. Stroke. 2017;48:1–8.CrossRefGoogle Scholar
  36. 36.
    Greving JP, Wermer MJ, Brown RD Jr, et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol. 2014;13(1):59–66.CrossRefGoogle Scholar
  37. 37.
    Pexman JH, Barber PA, Hill MD, et al. Use of the Alberta Stroke Program Early CT Score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR Am J Neuroradiol. 2001;22(8):1534–42.PubMedGoogle Scholar
  38. 38.
    Bal S, Bhatia R, Menon BK, et al. Time dependence of reliability of noncontrast computed tomography in comparison to computed tomography angiography source image in acute ischemic stroke. Int J Stroke. 2015;10(1):55–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Fransen PS, Beumer D, Berkhemer OA, et al. MR CLEAN, a multicenter randomized clinical trial of endovascular treatment for acute ischemic stroke in the Netherlands: study protocol for a randomized controlled trial. Trials. 2014;15:343.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Goyal M, Dermchuk AM, Menon BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372:1019–30.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Saver JL, Goyal M, Bonafe A, et al. Stent-retriever Thrombectomy after intravenous t-PA, vs. t-PA alone in acute stroke. N Engl J Med. 2015;372:2285–95.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Campbell BCV, Mitchell PJ, Kleinig PJ, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372:1009–18.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Jovin TG, Bonafe A, Cobo E, et al. Thrombectomy within 8 hours onset of acute stroke. N Engl J Med. 2015;372:2296–306.CrossRefGoogle Scholar
  44. 44.
    Nogueira RG, Jadhav DC, Haussen DC, et al. Thrombectomy 6-24 hours after stroke with mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21.PubMedCrossRefGoogle Scholar
  45. 45.
    Albers GW, Kemp MS, Christensen JP, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378:708–18. Scholar
  46. 46.
    Hacke W. A new DAWN for imaging-based selection in the treatment of acute stroke. N Engl J Med. 2018;378(1):81–3.PubMedCrossRefGoogle Scholar
  47. 47.
    van der Hoeven EJ, Schonewille WJ, Vos JA, et al. The basilar artery international cooperation study (BASICS): study protocol for a randomised controlled trial. Trials. 2013;14:200.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Bashkar S, Stanwell P, Cordato D, et al. Reperfusion therapy in acute ischemic stroke: dawn of a new era? BMC Neurol. 2018:18–8.Google Scholar
  49. 49.
    Oliveira Magaldi M, Nicolato A, Godinho JV, et al. Human placenta aneurysm model for training neurosurgeons in vascular neurosurgery. Neurosurgery. 2014;10(Suppl 4):592–600.PubMedCrossRefGoogle Scholar
  50. 50.
    De Oliveira MMR, Ferrarez CE, Ramos TM, et al. Learning brain aneurysm microsurgical skills in a human placenta model: predictive validity. J Neurosurg. 2017;128(3):846–52.PubMedCrossRefGoogle Scholar
  51. 51.
    Ostrom QT, Guttleman H, Fulop J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-Oncology. 2015;17:iv1–iv62.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.PubMedCrossRefGoogle Scholar
  53. 53.
    Font-Burgada J, Reina O, Rossell D, Azorín F. chroGPS, a global chromatin positioning system for the functional analysis and visualization of the epigenome. Nucleic Acids Res. 2014;42(4):2126–3.PubMedCrossRefGoogle Scholar
  54. 54.
    Chikawa K, Morishita S. A linear time algorithm for detecting long genomic regions enriched with a specific combination of epigenetic states. BMC Genomics. 2015;16(Suppl 2):S8.CrossRefGoogle Scholar
  55. 55.
    Hortobágyi T, Bencze J, Varkoly G, et al. Meningioma recurrence. Open Med (Wars). 2016;11(1):168–73.Google Scholar
  56. 56.
    De la Garza-Ramos R, Flores-Rodríue JV, Martínez-Gutierrez JC, Ruiz-Valls A, Caroso-Rio E. Current standing and frontiers of gene therapy for meningiomas. Neurosurg Focus. 2013;35(6):E4.CrossRefGoogle Scholar
  57. 57.
    Bi WL, Abedalthagafi M, Horowitz P, et al. Genomic landscape of intracranial meningiomas. J Neurosurg. 2016;125:525–35.PubMedCrossRefGoogle Scholar
  58. 58.
    Galani V, Lampri E, Varouktsi A, et al. Genetic and epigenetic alterations in meningiomas. Clin Neurol Neurosurg. 2017;158:119–25.PubMedCrossRefGoogle Scholar
  59. 59.
    Tang M, Wei H, Han L, et al. Whole-genome sequencing identifies new genetic alterations in meningiomas. Oncotarget. 2017;8(10):17070–80.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Olar A, Wani KM, Wilson CD, et al. Global epigenetic profiling identifies methylation subgroups associated with recurrence-free survival in meningioma. Acta Neuropathol. 2017;133(3):431–44.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    NNI Supplement to the President’s 2018 Budget. NSTC/COT/NSET. Nov 30, 2017.Google Scholar
  62. 62.
    Peng C, Gao X, Xu J, et al. Targeting orthotopic gliomas with renal-clearable luminescent gold nanoparticles. Nano Res. 2017;10(4):1366–76.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ferber S, Tiram G, Sousa-Herves A, et al. Co-targeting the tumor endothelium and P-selectin-expressing glioblastoma cells leads to a remarkable therapeutic outcome. Elife. 2017;6:pii: e25281.CrossRefGoogle Scholar
  64. 64.
    Zhang B, Wang H, Jin K, Jiang T, Shen S, Luo Z. BQ123 selectively improved tumor perfusion and enhanced nanomedicine delivery for glioblastomas treatment. Pharmacol Res. 2017;132:211–9. pii: S1043–6618(17)31332–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Panek WK, Khan OF, Yu D, Lesniak MS. Multiplexed nanomedicine for brain tumors: nanosized Hercules to tame our Lernaean Hydra inside? Nanomedicine (Lond). 2017;
  66. 66.
    Játiva P, Ceña V. Use of nanoparticles for glioblastoma treatment: a new approach. Nanomedicine (Lond). 2017;12(20):2533–54.CrossRefGoogle Scholar
  67. 67.
    Zhang B, Jiang T, Tuo Y, et al. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels. Cancer Lett. 2017;410:12–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mauro A. T. Ferreira
    • 1
  1. 1.Department of Anatomy and RadiologyUniversity Hospital- Federal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations