Advertisement

Photobiocatalysis: At the Interface of Photocatalysis and Biocatalysts

  • Madan L. Verma
  • Sarita Devi
  • Motilal Mathesh
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 36)

Abstract

Photobiocatalysis is a novel concept that aims at merging the features from photocatalysis and enzymatic catalysis. The process of photocatalysis involves the degradation of contaminants in water and air. It has also shown promising application in solar energy. However, many photocatalytic processes have low efficiency as compared to other enzymatic processes. Therefore, to improve the performance of such photocatalytic processes, a promising photobiocatalysis approach shows a great promise to enhance the effectiveness of the photocatalytic system. The combination of photocatalysis and biocatalysis technologies is an alternative to develop environmentally benign process for the synthesis of renewable chemicals. In photobiocatalysis, the semiconductor coupled with the enzyme which regularly needs a natural compound and a relay transferring charge carriers from the semiconductor. The enzyme diminution mediated by NAD+/NADH along with an electron relay utilized the conductivity band electrons of excited semiconductors for photobiocatalysis. The photosynthetic organisms are the natural source for photobiocatalysis.

The present write-up discusses the working mechanism and applications of the current photocatalytic system such as metal oxide photocatalyst and graphene-based photocatalyst. Advances in enzyme-mediated photocatalysis are particularly discussed. The critical factors to control the photobiocatalytic process and key enzymes involved in deciphering the reaction mechanism of photobiocatalysis are critically discussed. Cofactor vs mediator medicated photobiocatalysis is also discussed.

Keywords

Photobiocatalysis Biocatalysis Photocatalysis Redox reaction Photosensitizer Photosynthesis Cyanobacteria 

References

  1. Aksu S, Arends IW, Hollmann F (2009) A new regeneration system for oxidized nicotinamide cofactors. Adv Synth Catal 351(9):1211–1216.  https://doi.org/10.1002/adsc.200900033CrossRefGoogle Scholar
  2. Amalric L, Guillard C, Pichat P (1994) Use of catalase and superoxide dismutase to assess the roles of hydrogen peroxide and superoxide in the TiO2 or ZnO photocatalytic destruction of 1, 2-dimethoxybenzene in water. Res Chem Intermed 20(6):579–594.  https://doi.org/10.1163/156856794X00234CrossRefGoogle Scholar
  3. Ameta R, Solanki MS, Benjamin S, Ameta SC (2018) Photocatalysis. In: Ameta SC, Ameta R (eds) Advanced oxidation processes for waste water treatment. Academic, London, pp 135–175.  https://doi.org/10.1016/B978-0-12-810499-6.00006-1CrossRefGoogle Scholar
  4. Antonio JMA, Corma A, Garcia H (2015) Photobiocatalysis: the power of combining photocatalysis and enzymes. Chem Eur J 21(31):10940–10959.  https://doi.org/10.1002/chem.201406437CrossRefGoogle Scholar
  5. Asahi RY, Morikawa TA, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271.  https://doi.org/10.1126/science.1061051CrossRefGoogle Scholar
  6. Babot ED, del Río JC, Kalum L, Martínez AT, Gutiérrez A (2013) Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsiscinerea. Biotechnol Bioeng 110(9):2323–2332.  https://doi.org/10.1002/bit.24904CrossRefGoogle Scholar
  7. Blake DM, Maness PC, Huang Z, Wolfrum EJ, Huang J, Jacoby WA (1999) Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep Purif Methods 28:1–50.  https://doi.org/10.1080/03602549909351643CrossRefGoogle Scholar
  8. Bryson (2004) A short history of nearly everything. Black Swan, p 362. https://www.penguin.co.uk/books/1004856/a-short-history-of-nearly-everything/9781409095484.html
  9. Cao B, Cao S, Dong P, Gao J, Wang J (2013) High antibacterial activity of ultrafine TiO2/graphene sheets nanocomposites under visible light irradiation. Mater Lett 93:349–352.  https://doi.org/10.1016/j.matlet.2012.11.136CrossRefGoogle Scholar
  10. Cargnello M, Fornasiero P (2010) Photocatalysis by nanostructured TiO2 based semiconductors. In: Selva M, Perosa A (eds) Handbook of green chemistry, green nanoscience. Wiley-VCH, Weinheim.  https://doi.org/10.1002/9783527628698.hgc088CrossRefGoogle Scholar
  11. Chen D, Zhang H, Li X, Li J (2010) Biofunctional titania nanotubes for visible-light-activated photoelectrochemical biosensing. Anal Chem 82(6):2253–2261.  https://doi.org/10.1021/ac9021055CrossRefGoogle Scholar
  12. Churakova E (2014) Novel approaches for biocatalytic oxyfunctionalization reactions. TU Delft, Delft University of Technology.  https://doi.org/10.4233/uuid:421f5969-82bb-4978-94f7-b393ed455d3f
  13. Darnell JE, Lodish H, Baltimore D (1990) Molecular cell biology. Scientific American Books, New York. https://www.ncbi.nlm.nih.gov/books/NBK21475/Google Scholar
  14. De Silva AP, Gunaratne HN, Gunnlaugsson T, Huxley AJ, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97(5):1515–1566.  https://doi.org/10.1021/cr960386pCrossRefGoogle Scholar
  15. Drauz K, Gröger H, May O (eds) (2012) Enzyme catalysis in organic synthesis. Wiley-VCH, Weinheim.  https://doi.org/10.1002/anie.201304466CrossRefGoogle Scholar
  16. Esswein AJ, Nocera DG (2007) Hydrogen production by molecular photocatalysis. Chem Rev 107(10):4022–4047.  https://doi.org/10.1021/cr050193eCrossRefGoogle Scholar
  17. Ferrandi EE, Monti D, Patel I, Kittl R, Haltrich D, Riva S, Ludwig R (2012) Exploitation of a laccase/meldola’s blue system for NAD+ regeneration in preparative scale hydroxysteroid dehydrogenase-catalyzed oxidations. Adv Synth Catal 354(14–15):2821–2828.  https://doi.org/10.1002/adsc.201200429CrossRefGoogle Scholar
  18. Frank SN, Bard AJ (1977) Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J Am Chem Soc 99:303–304.  https://doi.org/10.1021/ja00443a081CrossRefGoogle Scholar
  19. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38.  https://doi.org/10.1038/238037a0CrossRefGoogle Scholar
  20. Fujishima A, Zhang X (2006) Titanium dioxide photocatalysis: present situation and future approaches. C R Chim 9(5-6):750–760.  https://doi.org/10.1016/j.crci.2005.02.055CrossRefGoogle Scholar
  21. Gole JL, Stout JD, Burda C, Lou Y, Chen X (2004) Highly efficient formation of visible light tunable TiO2-x N x photocatalysts and their transformation at the nanoscale. J Phys Chem B108(4):1230–1240.  https://doi.org/10.1021/jp030843nCrossRefGoogle Scholar
  22. Gratzel M (2012) Editor. Energy resources through photochemistry and catalysis. Elsevier. https://www.sciencedirect.com/book/9780122957208
  23. Grobe G, Ullrich R, Pecyna MJ, Kapturska D, Friedrich S, Hofrichter M, Scheibner K (2011) High-yield production of aromatic peroxygenase by the agaric fungus Marasmius rotula. AMB Express 1(1):31.  https://doi.org/10.1186/2191-0855-1-31CrossRefGoogle Scholar
  24. Hao S, Wu J, Huang Y, Lin J (2006) Natural dyes as photosensitizers for dye-sensitized solar cell. Sol Energy 80(2):209–214.  https://doi.org/10.1016/j.solener.2005.05.009CrossRefGoogle Scholar
  25. Hara M, Kondo T, Komoda M, Ikeda S, Kondo JN, Domen K, Hara M, Shinohara K, Tanaka A (1998) Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun:357–358.  https://doi.org/10.1039/A707440I
  26. Havel J, Weuster-Botz D (2007) Cofactor regeneration in phototrophic cyanobacteria applied for asymmetric reduction of ketones. Appl Microbiol Biotechnol 75(5):1031–1037.  https://doi.org/10.1007/s00253-007-0910-3CrossRefGoogle Scholar
  27. Hernández-Alonso MD, Fresno F, Suárez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2:1231–1257.  https://doi.org/10.1039/B907933ECrossRefGoogle Scholar
  28. Hirakawa H, Shiota S, Shiraishi Y, Sakamoto H, Ichikawa S, Hirai T (2016) Au nanoparticles supported on BiVO4: effective inorganic photocatalysts for H2O2 production from water and O2 under visible light. ACS Catal 6(8):4976–4982.  https://doi.org/10.1021/acscatal.6b01187CrossRefGoogle Scholar
  29. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535.  https://doi.org/10.1039/C3CS60378DCrossRefGoogle Scholar
  30. Hollmann F, Arends IW, Buehler K (2010) Biocatalytic redox reactions for organic synthesis: nonconventional regeneration methods. Chem Cat Chem 2(7):762–782.  https://doi.org/10.1002/cctc.201000069CrossRefGoogle Scholar
  31. Hollmann F, Arends IW, Buehler K, Schallmey A, Bühler B (2011) Enzyme-mediated oxidations for the chemist. Green Chem 13(2):226–265.  https://doi.org/10.1039/C0GC00595ACrossRefGoogle Scholar
  32. Holtmann D, Hollmann F (2016) The oxygen dilemma: a severe challenge for the application of monooxygenases? Chembio Chem 17(15):1391–1398.  https://doi.org/10.1002/cbic.201600176CrossRefGoogle Scholar
  33. Hsiao CY, Lee CL, Ollis DF (1983) Heterogeneous photocatalysis: degradation of dilute solutions of dichloromethane (CH2Cl2), chloroform (CHCl3), and carbon tetrachloride (CCl4) with illuminated TiO2 photocatalyst. J Catal 82:418–423.  https://doi.org/10.1016/0021-9517(83)90208-7CrossRefGoogle Scholar
  34. Imahori H, Umeyama T, Ito S (2009) Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc Chem Res 42(11):1809–1818.  https://doi.org/10.1021/ar900034tCrossRefGoogle Scholar
  35. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638.  https://doi.org/10.1038/277637a0CrossRefGoogle Scholar
  36. Iwase A, Ng YH, Ishiguro Y, Kudo A, Amal R (2011) Reduced graphene oxide as a solid-state electron mediator in z-scheme photocatalytic water splitting under visible light. J Am Chem Soc 133:11054–11057.  https://doi.org/10.1021/ja203296zCrossRefGoogle Scholar
  37. Jagadale TC, Takale SP, Sonawane RS, Joshi HM, Patil SI, Kale BB, Ogale SB (2008) N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method. J Phys Chem C 112(37):14595–14602.  https://doi.org/10.1021/jp803567fCrossRefGoogle Scholar
  38. Kemp KC, Seema H, Saleh M, Le NH, Mahesh K, Chandra V, Kim KS (2013) Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 5:3149–3171.  https://doi.org/10.1039/C3NR33708ACrossRefGoogle Scholar
  39. Khan SU, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590):2243–2245.  https://doi.org/10.1126/science.1075035CrossRefGoogle Scholar
  40. Khan MM, Adil SF, Al-Mayouf A (2015) Metal oxides as photocatalysts. J Saudi Chem Soc 19:462–464.  https://doi.org/10.1016/j.jscs.2015.04.003CrossRefGoogle Scholar
  41. Kim JH, Lee SH, Lee JS, Lee M, Park CB (2011) Zn-containing porphyrin as a biomimetic light-harvesting molecule for biocatalyzed artificial photosynthesis. Chem Commun 47(37):10227–10229.  https://doi.org/10.1039/C1CC12222CCrossRefGoogle Scholar
  42. Kim JH, Nam DH, Park CB (2014) Nanobiocatalytic assemblies for artificial photosynthesis. Curr Opin Biotechnol 28:1–9.  https://doi.org/10.1016/j.copbio.2013.10.008CrossRefGoogle Scholar
  43. Kofuji Y, Ohkita S, Shiraishi Y, Sakamoto H, Tanaka S, Ichikawa S, Hirai T (2016) Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight. ACS Catal 6(10):7021–7029.  https://doi.org/10.1021/acscatal.6b02367CrossRefGoogle Scholar
  44. Kojima H, Okada A, Takeda S, Nakamura K (2009) Effect of carbon dioxide concentrations on asymmetric reduction of ketones with plant-cultured cells. Tetrahedron Lett 50(50):7079–7081.  https://doi.org/10.1016/j.tetlet.2009.10.002CrossRefGoogle Scholar
  45. Könst P, Kara S, Kochius S, Holtmann D, Arends IW, Ludwig R, Hollmann F (2013) Expanding the scope of laccase-mediator systems. ChemCatChem 5(10):3027–3032.  https://doi.org/10.1002/cctc.201300205CrossRefGoogle Scholar
  46. Krieg T, Hüttmann S, Mangold KM, Schrader J, Holtmann D (2011) Gas diffusion electrode as novel reaction system for an electro-enzymatic process with chloroperoxidase. Green Chem 13(10):2686–2689.  https://doi.org/10.1039/C1GC15391ACrossRefGoogle Scholar
  47. Kumar A, Kumar A, Sharma G et al (2017) Solar-driven photodegradation of 17-β-estradiol and ciprofloxacin from waste water and CO2 conversion using sustainable coal-char/polymeric-g-C3N4/RGO metal-free nano-hybrids. New J Chem 41:10208–10224.  https://doi.org/10.1039/c7nj01580aCrossRefGoogle Scholar
  48. Kumar A, Sharma SK, Sharma G et al (2019) Wide spectral degradation of Norfloxacin by Ag@BiPO4/BiOBr/BiFeO3 nano-assembly: elucidating the photocatalytic mechanism under different light sources. J Hazard Mater 364:429–440.  https://doi.org/10.1016/j.jhazmat.2018.10.060CrossRefGoogle Scholar
  49. Lan Y, Lu Y, Ren Z (2013) Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy 2:1031–1045.  https://doi.org/10.1016/j.nanoen.2013.04.002CrossRefGoogle Scholar
  50. Lang ND, Kohn W (1970) Theory of metal surfaces: charge density and surface energy. Phys Rev B 1:4555–4568.  https://doi.org/10.1103/PhysRevB.1.4555CrossRefGoogle Scholar
  51. Lee SH, Choi DS, Kuk SK, Park CB (2018) Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew Chem Int EdEng l57(27):7958–7985.  https://doi.org/10.1002/anie.201710070CrossRefGoogle Scholar
  52. Liu S, Chen A (2005) Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing. Langmuir 21(18):8409–8413.  https://doi.org/10.1021/la050875xCrossRefGoogle Scholar
  53. Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1(18):2655–2661.  https://doi.org/10.1021/jz1007966CrossRefGoogle Scholar
  54. Mifsud M, Gargiulo S, Iborra S, Arends IW, Hollmann F, Corma A (2014) Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nat Commun 5:3145.  https://doi.org/10.1038/ncomms4145CrossRefGoogle Scholar
  55. Mitoraj D, Janczyk A, Strus M, Kisch H, Stochel G, Heczko PB, Macyk W (2007) Visible light inactivation of bacteria and fungi by modified titanium dioxide. Photochem Photobiol Sci 6:642–648.  https://doi.org/10.1039/B617043ACrossRefGoogle Scholar
  56. Molina-Espeja P, Garcia-Ruiz E, Gonzalez-Perez D, Ullrich R, Hofrichter M, Alcalde M (2014) Directed evolution of unspecific peroxygenase from Agrocybe aegerita. Appl Environ Microbiol 80:3496–3507.  https://doi.org/10.1128/AEM.00490-14CrossRefGoogle Scholar
  57. Monti D, Ottolina G, Carrea G, Riva S (2011) Redox reactions catalyzed by isolated enzymes. Chem Rev 111(7):4111–4140.  https://doi.org/10.1021/cr100334xCrossRefGoogle Scholar
  58. Muruganandham M, Chen IS, Wu JJ (2009) Effect of temperature on the formation of macroporous ZnO bundles and its application in photocatalysis. J Hazard Mater 172:700–706.  https://doi.org/10.1016/j.jhazmat.2009.07.053CrossRefGoogle Scholar
  59. Nakamura K, Yamanaka R (2002) Light mediated cofactor recycling system in biocatalytic asymmetric reduction of ketone. Chem Commun (16):1782–1783.  https://doi.org/10.1039/B203844G
  60. Nakamura K, Yamanaka R, Matsuda T, Harada T (2003) Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymm 14(18):2659–2681.  https://doi.org/10.1016/S0957-4166(03)00526-3CrossRefGoogle Scholar
  61. Nam DH, Park CB (2012) Visible light-driven NADH regeneration sensitized by proflavine for biocatalysis. Chembiochem 13(9):1278–1282.  https://doi.org/10.1002/cbic.201200115CrossRefGoogle Scholar
  62. Naushad M, ALOthman ZA (2015) Separation of toxic Pb2+ metal from aqueous solution using strongly acidic cation-exchange resin: analytical applications for the removal of metal ions from pharmaceutical formulation. Desalin Water Treat 53:2158–2166.  https://doi.org/10.1080/19443994.2013.862744CrossRefGoogle Scholar
  63. Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162.  https://doi.org/10.1103/RevModPhys.81.109CrossRefGoogle Scholar
  64. Ni Y, Fernández-Fueyo E, Baraibar AG, Ullrich R, Hofrichter M, Yanase H, Alcalde M, van Berkel WJ, Hollmann F (2016) Peroxygenase-catalyzed oxyfunctionalization reactions promoted by the complete oxidation of methanol. Angew Chem Int Ed 55(2):798–801.  https://doi.org/10.1002/anie.201507881CrossRefGoogle Scholar
  65. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal A Gen 265(1):115–121.  https://doi.org/10.1016/j.apcata.2004.01.007CrossRefGoogle Scholar
  66. Okamoto KI, Yamamoto Y, Tanaka H, Tanaka M, Itaya A (1985) Heterogeneous photocatalytic decomposition of phenol over TiO2 powder. B Chem Soc Jpn 58(7):2015–2022.  https://doi.org/10.1246/bcsj.58.2015CrossRefGoogle Scholar
  67. Oppelt KT, Gasiorowski J, Egbe DA, Kollender JP, Himmelsbach M, Hassel AW, Sariciftci NS, Knör G (2014) Rhodium-coordinated poly (arylene-ethynylene)-alt-poly (arylene-vinylene) copolymer acting as photocatalyst for visible-light-powered NAD+/NADH reduction. J Am Chem Soc 136(36):12721–12729.  https://doi.org/10.1021/ja506060uCrossRefGoogle Scholar
  68. Pal AK, Hanan GS (2014) Design, synthesis and excited-state properties of mononuclear Ru (II) complexes of tridentate heterocyclic ligands. Chem Soc Rev 43(17):6184–6197.  https://doi.org/10.1039/C4CS00123KCrossRefGoogle Scholar
  69. Patel RN (2016) Editor. Green biocatalysis. Wiley.  https://doi.org/10.1002/9781118828083Google Scholar
  70. Piontek K, Strittmatter E, Ullrich R, Gröbe G, Pecyna MJ, Kluge M, Scheibner K, Hofrichter M, Plattner DA (2013) Structural basis of substrate conversion in a new aromatic peroxygenase: P450 functionality with benefits. J Biol Chem 288:34767–34776.  https://doi.org/10.1074/jbc.M113.514521CrossRefGoogle Scholar
  71. Portenkirchner E, Oppelt K, Egbe DA, Knör G, Sariçiftçi NS (2013) Electro-and photo-chemistry of rhenium and rhodium complexes for carbon dioxide and proton reduction: a mini review. Nanomater Energy 2(3):134–147.  https://doi.org/10.1680/nme.13.00004CrossRefGoogle Scholar
  72. Qu Y, Duan X (2013) Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev 42(7):2568–2580.  https://doi.org/10.1039/C2CS35355ECrossRefGoogle Scholar
  73. Rauch M, Schmidt S, Arends IW, Oppelt K, Kara S, Hollmann F (2017) Photobiocatalytic alcohol oxidation using LED light sources. Green Chem 19(2):376–379.  https://doi.org/10.1039/C6GC02008ACrossRefGoogle Scholar
  74. Rodriguez C, Lavandera I, Gotor V (2012) Recent advances in cofactor regeneration systems applied to biocatalyzed oxidative processes. Curr Org Chem 16(21):2525–2541.  https://doi.org/10.2174/138527212804004643CrossRefGoogle Scholar
  75. Saito T, Iwase T, Horie J, Morioka T (1992) Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci. J Photochem Photobiol B Biol 14:369–379.  https://doi.org/10.1016/1011-1344(92)85115-BCrossRefGoogle Scholar
  76. Schoell SJ, Oliveros A, Steenackers M, Saddow SE, Sharp ID (2012) Multifunctional SiC surfaces: from passivation to biofunctionalization. Silicon Carbide Biotechnol:63–117.  https://doi.org/10.1016/B978-0-12-385906-8.00003-9CrossRefGoogle Scholar
  77. Schulz S, Girhard M, Urlacher VB (2012) Biocatalysis: key to selective oxidations. ChemCatChem 4(12):1889–1895.  https://doi.org/10.1002/cctc.201200533CrossRefGoogle Scholar
  78. Sekar N, Ramasamy RP (2015) Recent advances in photosynthetic energy conversion. J Photochem Photobiol Photochem Rev 22:19–33.  https://doi.org/10.1016/j.jphotochemrev.2014.09.004CrossRefGoogle Scholar
  79. Shaikh IR (2014) Organocatalysis: key trends in green synthetic chemistry, challenges, scope towards heterogenization, and importance from research and industrial point of view. J Catal.  https://doi.org/10.1155/2014/402860CrossRefGoogle Scholar
  80. Sharma G, Naushad M, Al-Muhtaseb AH et al (2017) Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium. Int J Biol Macromol 95:484–493.  https://doi.org/10.1016/j.ijbiomac.2016.11.072CrossRefGoogle Scholar
  81. Shasha Z, Dunwei W (2017) Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv Energy Mater 7:1700841.  https://doi.org/10.1002/aenm.201700841CrossRefGoogle Scholar
  82. Shi Q, Yang D, Jiang Z, Li J (2006) Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles. J Mol Catal B Enzym 43(1–4):44–48.  https://doi.org/10.1016/j.molcatb.2006.06.005CrossRefGoogle Scholar
  83. Sreeprasad TS, Berry V (2013) How do the electrical properties of graphene change with its functionalization? Small 9:341–350.  https://doi.org/10.1002/smll.201202196CrossRefGoogle Scholar
  84. Takemura T, Akiyama K, Umeno N, Tamai Y, Ohta H, Nakamura K (2009) Asymmetric reduction of a ketone by knockout mutants of a cyanobacterium. J Mol Catal B Enzym 60(1-2):93–95.  https://doi.org/10.1016/j.molcatb.2009.03.017CrossRefGoogle Scholar
  85. Te-Fu Y, Chiao-Yi T, Shean-Jen C, Hsisheng T (2014) Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv Mater 26:3297–3303.  https://doi.org/10.1002/adma.201305299CrossRefGoogle Scholar
  86. Trost BM (1991) The atom economy – a search for synthetic efficiency. Science 254:1471–1477.  https://doi.org/10.1126/science.1962206CrossRefGoogle Scholar
  87. Tuller HL (2017) Solar to fuels conversion technologies: a perspective. Mater Renew Sustain Energy 6(1):3.  https://doi.org/10.1007/s40243-017-0088-2CrossRefGoogle Scholar
  88. Ullrich R, Nüske J, Scheibner K, Spantzel J, Hofrichter M (2004) Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70(8):4575–4581.  https://doi.org/10.1128/AEM.70.8.4575-4581.2004CrossRefGoogle Scholar
  89. Urlacher VB, Girhard M (2012) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 30(1):26–36.  https://doi.org/10.1016/j.tibtech.2011.06.012CrossRefGoogle Scholar
  90. Urlacher V, Schmid RD (2002) Biotransformations using prokaryotic P450 monooxygenases. Curr Opin Biotechnol 13(6):557–564.  https://doi.org/10.1016/S0958-1669(02)00357-9CrossRefGoogle Scholar
  91. Van der Donk WA, Zhao H (2003) Recent developments in pyridine nucleotide regeneration. Curr Opin Biotechnol 14(4):421–426.  https://doi.org/10.1016/S0958-1669(03)00094-6CrossRefGoogle Scholar
  92. van Rantwijk F, Sheldon RA (2000) Selective oxygen transfer catalysed by heme peroxidases: synthetic and mechanistic aspects. Curr Opin Biotechnol 11(6):554–564.  https://doi.org/10.1016/S0958-1669(00)00143-9CrossRefGoogle Scholar
  93. Wang S, Ang PK, Wang Z, Tang ALL, Thong JTL, Loh KP (2010) High mobility, printable, and solution-processed graphene electronics. Nano Lett 10:92–98.  https://doi.org/10.1021/nl9028736CrossRefGoogle Scholar
  94. Wang Y, Yu J, Xiao W, Li Q (2014) Microwave-assisted hydrothermal synthesis of graphene based Au-TiO2 photocatalysts for efficient visible-light hydrogen production. J Mater Chem A 2:3847–3855.  https://doi.org/10.1039/C3TA14908KCrossRefGoogle Scholar
  95. Wang Y, Lan D, Durrani R, Hollmann F (2017) Peroxygenases en route to becoming dream catalysts. What are the opportunities and challenges? Curr Opin Chem Biol 37:1–9.  https://doi.org/10.1016/j.cbpa.2016.10.007CrossRefGoogle Scholar
  96. Weckbecker A, Gröger H, Hummel W (2010) Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. In: Biosystems engineering I: creating superior biocatalysts. Springer, Berlin, pp 195–242.  https://doi.org/10.1007/10_2009_55CrossRefGoogle Scholar
  97. Wenguang T, Young Z, Qi L, Shicheng Y, Shanshan B, Xiaoyong W, Min X, Zhigang Z (2013) An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv Funct Mater 23:1743–1749.  https://doi.org/10.1002/adfm.201202349CrossRefGoogle Scholar
  98. Willner I, Lapidot N, Riklin A, Kasher R, Zahavy E, Katz E (1994) Electron-transfer communication in glutathione reductase assemblies: electrocatalytic, photocatalytic, and catalytic systems for the reduction of oxidized glutathione. J Am Chem Soc 116(4):1428–1441.  https://doi.org/10.1021/ja00083a031CrossRefGoogle Scholar
  99. Wu H, Tian C, Song X, Liu C, Yang D, Jiang Z (2013) Methods for the regeneration of nicotinamide coenzymes. Green Chem 15(7):1773–1789.  https://doi.org/10.1039/C3GC37129HCrossRefGoogle Scholar
  100. Xin L, Yu J, Wageh S, Al-Ghamdi A, Xie J (2016) Graphene in photocatalysis: a review. Small 12:6640–6696.  https://doi.org/10.1002/smll.201600382CrossRefGoogle Scholar
  101. Xu X, Ni Q (2010) Synthesis and characterization of novel Bi2MoO6/NaY materials and photocatalytic activities under visible light irradiation. Catal Commun 11:359–363.  https://doi.org/10.1016/j.catcom.2009.11.001CrossRefGoogle Scholar
  102. Yamanaka R, Nakamura K, Murakami A (2011) Reduction of exogenous ketones depends upon NADPH generated photosynthetically in cells of the cyanobacterium Synechococcus PCC 7942. AMB Express 1(1):24.  https://doi.org/10.1186/2191-0855-1-24CrossRefGoogle Scholar
  103. Yee MC, Bartholomew JC (1989) Effects of 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea on the cell cycle in Euglena gracilis. Plant Physiol 91(3):1025–1029.  https://doi.org/10.1104/pp.91.3.1025CrossRefGoogle Scholar
  104. Yemmireddy VK, Hung YC (2017) Using photocatalyst metal oxides as antimicrobial surface coatings to ensure food safety-opportunities and challenges. Compr Rev Food Sci F 16:617–631.  https://doi.org/10.1111/1541-4337.12267CrossRefGoogle Scholar
  105. Yu J, Jin J, Cheng B, Jaroniec M (2014) A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J Mater Chem A 2:3407–3416.  https://doi.org/10.1039/C3TA14493CCrossRefGoogle Scholar
  106. Zhang Y, He P, Hu N (2004) Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochim Acta 49(12):1981–1998.  https://doi.org/10.1016/j.electacta.2003.12.028CrossRefGoogle Scholar
  107. Zhang P, Zhang J, Gong J (2014) Tantalum-based semiconductors for solar water splitting. Chem Soc Rev 43:4395–4422.  https://doi.org/10.1039/C3CS60438ACrossRefGoogle Scholar
  108. Zhang W, Fernández-Fueyo E, Ni Y, van Schie M, Gacs J, Renirie R, Wever R, Mutti FG, Rother D, Alcalde M, Hollmann F (2018) Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations. Nat Catal 1(1):55.  https://doi.org/10.1038/s41929-017-0001-5CrossRefGoogle Scholar
  109. Zhou L, Zhang H, Sun H, Liu S, Tade MO, Wang S, Jin W (2016) Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review. Cat Sci Technol 6:7002–7023.  https://doi.org/10.1039/C6CY01195KCrossRefGoogle Scholar
  110. Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159.  https://doi.org/10.1016/j.copbio.2008.02.004CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Madan L. Verma
    • 1
    • 2
  • Sarita Devi
    • 3
  • Motilal Mathesh
    • 4
  1. 1.Center for Chemistry and BiotechnologyDeakin UniversityGeelongAustralia
  2. 2.Department of BiotechnologyDr. YS Parmar University of Horticulture and ForestryHamirpurIndia
  3. 3.Department of Patents and DesignsBoudhikSampada BhawanDwarka, New DelhiIndia
  4. 4.Institute of Molecules and MaterialsRadboud UniversityNijmegenThe Netherlands

Personalised recommendations