Advertisement

Photocatalysts and Photoelectrocatalysts in Fuel Cells and Photofuel Cells

  • Prasenjit Bhunia
  • Kingshuk DuttaEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 36)

Abstract

The present concern in the energy sector is the very high rate of decrease of the reserves of fossil fuel of our planet. Therefore, the continuously increasing need for reliable energy supply has led to a boost in research and development of alternative energy sources. These alternative energy sources should essentially exhibit ready availability, renewability, sustainability, and environmental friendliness. Two prime examples of such green energy sources are solar energy and energy from readily available fuels (such as waste matter and biomass). This has led to the development of photofuel cells (PFCs), which combine the unique properties of solar cells and fuel cells. In addition, the use of photocatalysts and photoelectrocatalysts in normal fuel cells serves the purpose of trapping solar energy to cause oxidation of the fuel in fuel cells, which in turn results in generation of electrical energy.

This chapter has mainly dealt with fundamental differences between photocatalytic fuel cells (a type of photoelectrochemical cells) and other photoelectrochemical cells. The fundamental aspects and configurations of photocatalytic fuel cells, the mechanism of their operation, and the often employed photocatalysts for the fabrication of photoanodes and photocathodes have been systematically and elaborately discussed. The photocatalytic fuel cells, also called PFCs, photocatalytically degrade organic substances or biomass or water-soluble wastes to produce electricity in spontaneous mode, i.e., ΔG < 0 in the electrolyte. In photoelectrochemical fuel cell, electrical energy gets converted from photon energy without changing the composition of the reduction-oxidation electrolyte or the counter or semiconductor electrode. The major effort of this chapter is to offer necessary knowledge and visualization of the fundamental differences that exist between photocatalytic and photoelectrocatalytic fuel cells to the new researchers in this field, as well as a handy manual to the experienced researchers.

Keywords

Photocatalysts Photoelectrocatalysts Photofuel cells Fuel cells Photoelectrochemical cells Solar energy Photocathode Photoanode Clean energy Renewable energy 

Notes

Acknowledgments

KD would like to thank the Science and Engineering Research Board (SERB) [Department of Science and Technology (DST), Govt. of India] and the Indo-US Science and Technology Forum (IUSSTF) for the Indo-US Postdoctoral Fellowship (Award No. 2017/8-Kingshuk Dutta).

References

  1. Antoniadou M, Lianos P (2009) Near ultraviolet and visible light photoelectrochemical degradation of organic substances producing electricity and hydrogen. J Photochem Photobiol A Chem 204:69–74.  https://doi.org/10.1016/j.jphotochem.2009.02.001CrossRefGoogle Scholar
  2. Antoniadou M, Lianos P (2010) Production of electricity by photoelectrochemical oxidation of ethanol in a photofuel cell. Appl Catal B Environ 99:307–313.  https://doi.org/10.1016/j.apcatb.2010.06.037CrossRefGoogle Scholar
  3. Antoniadou M, Kondarides DI, Labou D, Neophytides S, Lianos P (2010) An efficient photoelectrochemical cell functioning in the presence of organic wastes. Sol Energy Mater Sol Cells 94:592–597.  https://doi.org/10.1016/j.solmat.2009.12.004CrossRefGoogle Scholar
  4. Antoniadou M, Daskalaki VM, Balis N, Kondarides DI, Kordulis C, Lianos P (2011) Photocatalysis and photoelectrocatalysis using (CdS-ZnS)/TiO2 combined photocatalysts. Appl Catal B Environ 107:188–196.  https://doi.org/10.1016/j.apcatb.2011.07.013CrossRefGoogle Scholar
  5. Antoniadou M, Kondarides DI, Dionysiou DD, Lianos P (2012a) Quantum dot sensitized titania applicable as photoanode in photoactivated fuel cells. J Phys Chem C 116:16901–16909.  https://doi.org/10.1021/jp305098mCrossRefGoogle Scholar
  6. Antoniadou M, Panagiotopoulou P, Kondarides DI, Lianos P (2012b) Photocatalysis and photoelectrocatalysis using nanocrystalline titania alone or combined with Pt, RuO2 or NiO co-catalysts. J Appl Electrochem 42:737–743.  https://doi.org/10.1007/s10800-012-0408-2CrossRefGoogle Scholar
  7. Antoniadou M, Han C, Sfaelou S, Michailidi M, Dionysiou D, Lianos P (2013) Solar energy conversion using photo-fuel-cells. Sci Adv Mater 5:1756–1763.  https://doi.org/10.1166/sam.2013.1628CrossRefGoogle Scholar
  8. Antoniadou M, Sfaelou S, Dracopoulos V, Lianos P (2014a) Platinum-free photoelectrochemical water splitting. Catal Commun 43:72–74.  https://doi.org/10.1016/j.catcom.2013.09.010CrossRefGoogle Scholar
  9. Antoniadou M, Sfaelou S, Lianos P (2014b) Quantum dot sensitized titania for photo-fuel-cell and for water splitting operation in the presence of sacrificial agents. Chem Eng J 254:245–251.  https://doi.org/10.1016/j.cej.2014.05.106CrossRefGoogle Scholar
  10. Antony RP, Bassi PS, Abdi FF, Chiam SY, Ren Y, Barber J, Loo JSC, Wong LH (2016) Electrospun Mo-BiVO4 for efficient photoelectrochemical water oxidation: Direct evidence of improved hole diffusion length and charge separation. Electrochim Acta 211:173–182.  https://doi.org/10.1016/j.electacta.2016.06.008CrossRefGoogle Scholar
  11. Arabatzis IM, Stergiopoulos T, Andreeva D, Kitova S, Neophytides SG, Falaras P (2003) Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J Catal 220:127–135.  https://doi.org/10.1016/S0021-9517(03)00241-0CrossRefGoogle Scholar
  12. Azevedo J, Tilley SD, Schreier M, Stefik M, Sousa C, Araújo JP, Mendes A, Grätzel M, Mayer MT (2016) Tin oxide as stable protective layer for composite cuprous oxide water-splitting photocathodes. Nano Energy 24:10–16.  https://doi.org/10.1016/j.nanoen.2016.03.022CrossRefGoogle Scholar
  13. Bahnemann W, Muneer M, Haque MM (2007) Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catal Today 124:133–148.  https://doi.org/10.1016/j.cattod.2007.03.031CrossRefGoogle Scholar
  14. Bai J, Wang R, Li Y, Tang Y, Zeng Q, Xia L, Li X, Li J, Li C, Zhou B (2016) A solar light driven dual photoelectrode photocatalytic fuel cell (PFC) for simultaneous wastewater treatment and electricity generation. J Hazard Mater 311:51–62.  https://doi.org/10.1016/j.jhazmat.2016.02.052CrossRefGoogle Scholar
  15. Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrog Energy 27:991–1022.  https://doi.org/10.1016/S0360-3199(02)00022-8CrossRefGoogle Scholar
  16. Banerjee J, Dutta K (2017) Materials for electrodes of Li-ion batteries: issues related to stress development. Crit Rev Solid State Mater Sci 42:218–238.  https://doi.org/10.1080/10408436.2016.1173011CrossRefGoogle Scholar
  17. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  18. Bashiri R, Mohamed NM, Kait CF, Sufian S, Kakooei S, Khatani M, Gholami Z (2016) Optimization hydrogen production over visible light-driven titania-supported bimetallic photocatalyst from water photosplitting in tandem photoelectrochemical cell. Renew Energy 99:960–970.  https://doi.org/10.1016/j.renene.2016.07.079CrossRefGoogle Scholar
  19. Borganello E, Kiwi J, Gratzel M, Pelizzetti E, Visca M (1982) Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J Am Chem Soc 104:2996–3002.  https://doi.org/10.1021/ja00375a010CrossRefGoogle Scholar
  20. Borman S (1991) Photoelectrochemical cells: energy source for the future? Chem Eng News 69:17–25.  https://doi.org/10.1021/cen-v069n029.p017CrossRefGoogle Scholar
  21. Brillet J, Cornuz M, Le Formal F, Yum J-H, Grätzel M, Sivula K (2010) Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting. J Mater Res 25:17–24.  https://doi.org/10.1557/JMR.2010.0009CrossRefGoogle Scholar
  22. Buehler N, Meier K, Reber JF (1984) Photochemical hydrogen production with cadmium sulfide suspensions. J Phys Chem 88:3261–3268.  https://doi.org/10.1021/j150659a025CrossRefGoogle Scholar
  23. Canterino M, Di Somma I, Marotta R, Andreozzi R, Caprio V (2009) Energy recovery in wastewater decontamination: simultaneous photocatalytic oxidation of an organic substrate and electricity generation. Water Res 43:2710–2716.  https://doi.org/10.1016/j.watres.2009.03.012CrossRefGoogle Scholar
  24. Chen Y, Feng X, Liu M, Su J, Shen S (2016) Towards efficient solar-to-hydrogen conversion: fundamentals and recent progress in copper-based chalcogenide photocathodes. Nano 5:524–547.  https://doi.org/10.1515/nanoph-2016-0027CrossRefGoogle Scholar
  25. Chojnowski F, Clechet P, Martin J-R, Herrmann J-M, Pichat P (1981) Hydrogen production by water photoelectrolysis with a powder semiconductor anode. Chem Phys Lett 84:555–559.  https://doi.org/10.1016/0009-2614(81)80407-1CrossRefGoogle Scholar
  26. Coronado JM, Zorn ME, Tejedor-Tejedor I, Anderson MA (2003) Photocatalytic oxidation of ketones in the gas phase over TiO2 thin films: a kinetic study on the influence of water vapor. Appl Catal B Environ 43:329–344.  https://doi.org/10.1016/S0926-3373(03)00022-5CrossRefGoogle Scholar
  27. Das S, Dutta K, Shul YG, Kundu PP (2015) Progress in developments of inorganic nanocatalysts for application in direct methanol fuel cells. Crit Rev Solid State Mater Sci 40:316–357.  https://doi.org/10.1080/10408436.2015.1030493CrossRefGoogle Scholar
  28. Das S, Dutta K, Kundu PP (2016) Sulfonated polypyrrole matrix induced enhanced efficiency of Ni nanocatalyst for application as an anode material for DMFCs. Mater Chem Phys 176:143–151.  https://doi.org/10.1016/j.matchemphys.2016.03.046CrossRefGoogle Scholar
  29. Das S, Dutta K, Rana D (2018) Polymer electrolyte membranes for microbial fuel cells: a review. Polym Rev. 58:610–629.  https://doi.org/10.1080/15583724.2017.1418377CrossRefGoogle Scholar
  30. Dhiman P, Naushad M, Batoo KM et al (2017) Nano FexZn1−xO as a tuneable and efficient photocatalyst for solar powered degradation of bisphenol A from aqueous environment. J Clean Prod 165:1542–1556.  https://doi.org/10.1016/j.jclepro.2017.07.245CrossRefGoogle Scholar
  31. Di Paola A, Marci G, Palmisano L, Sciavello M, Uosaki K, Ikeda S, Ohtani B (2002) Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol. J Phys Chem B 106:637–645.  https://doi.org/10.1021/jp013074lCrossRefGoogle Scholar
  32. Dou B, Song Y, Wang C, Chen H, Xu Y (2014) Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: issues and challenges. Renew Sust Energ Rev 30:950–960.  https://doi.org/10.1016/j.rser.2013.11.029CrossRefGoogle Scholar
  33. Dozzi MV, Marzorati S, Longhi M, Coduri M, Artiglia L, Selli E (2016) Photocatalytic activity of TiO2-WO3 mixed oxides in relation to electron transfer efficiency. Appl Catal B Environ 186:157–165.  https://doi.org/10.1016/j.apcatb.2016.01.004CrossRefGoogle Scholar
  34. Dutta K (2017) Polymer-inorganic nanocomposites for polymer electrolyte membrane fuel cells. In: Lin Z, Yang Y, Zhang A (eds) Polymer-engineered nanostructures for advanced energy applications, Ch. 15. Springer, Cham, pp 577–606.  https://doi.org/10.1007/978-3-319-57003-7_15CrossRefGoogle Scholar
  35. Dutta K, Kundu PP (2014) A review on aromatic conducting polymers-based catalyst supporting matrices for application in microbial fuel cells. Polym Rev 54:401–435.  https://doi.org/10.1080/15583724.2014.881372CrossRefGoogle Scholar
  36. Dutta K, Kundu PP (2018) Introduction to microbial fuel cells. In: Kundu PP, Dutta K (eds) Progress and recent trends in microbial fuel cells, Ch. 1. Elsevier, Amsterdam, pp 1–6.  https://doi.org/10.1016/B978-0-444-64017-8.00001-4Google Scholar
  37. Dutta K, Kundu PP, Kundu A (2014) Fuel cells – exploratory fuel cells | micro-fuel cells. In: Reedijk J (ed) Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Amsterdam.  https://doi.org/10.1016/B978-0-12-409547-2.10975-8CrossRefGoogle Scholar
  38. Dutta K, Das S, Kundu PP (2015a) Synthesis, preparation, and performance of blends and composites of π-conjugated polymers and their copolymers in DMFCs. Polym Rev 55:630–677.  https://doi.org/10.1080/15583724.2015.1028631CrossRefGoogle Scholar
  39. Dutta K, Das S, Rana D, Kundu PP (2015b) Enhancements of catalyst distribution and functioning upon utilization of conducting polymers as supporting matrices in DMFCs: A review. Polym Rev 55:1–56.  https://doi.org/10.1080/15583724.2014.958771CrossRefGoogle Scholar
  40. Dutta K, Rana D, Han HS, Kundu PP (2017) Unitized regenerative fuel cells: a review on developed catalyst systems and bipolar plates. Fuel Cells 17:736–751.  https://doi.org/10.1002/fuce.201700018CrossRefGoogle Scholar
  41. Esposito DV, Forest RV, Chang Y, Gaillard N, McCandless BE, Hou S, Lee KH, Birkmire RW, Chen JG (2012) Photoelectrochemical reforming of glucose for hydrogen production using a WO3-based tandem cell device. Energy Environ Sci 5:9091–9099.  https://doi.org/10.1039/C2EE22560CCrossRefGoogle Scholar
  42. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357.  https://doi.org/10.1021/cr00017a016CrossRefGoogle Scholar
  43. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38.  https://doi.org/10.1038/238037a0CrossRefGoogle Scholar
  44. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21.  https://doi.org/10.1016/S1389-5567(00)00002-2CrossRefGoogle Scholar
  45. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582.  https://doi.org/10.1016/j.surfrep.2008.10.001CrossRefGoogle Scholar
  46. Gan J, Lu X, Tong Y (2014) Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation. Nanoscale 6:7142–7164.  https://doi.org/10.1039/C4NR01181CCrossRefGoogle Scholar
  47. Gao B, Peng C, Chen GZ, Puma GL (2008) Photo-electro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) composite prepared by a novel surfactant wrapping sol-gel method. Appl Catal B Environ 85:17–23.  https://doi.org/10.1016/j.apcatb.2008.06.027CrossRefGoogle Scholar
  48. Gao B, Chen GZ, Puma GL (2009) Carbon nanotubes/titanium oxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol-gel methods exhibiting enhanced photocatalytic activity. Appl Catal B Environ 89:503–509.  https://doi.org/10.1016/j.apcatb.2009.01.009CrossRefGoogle Scholar
  49. Getoff N (1990) Photoelectrochemical and photocatalytic methods of hydrogen production: a short review. Int J Hydrog Energy 15:407–417.  https://doi.org/10.1016/0360-3199(90)90198-8CrossRefGoogle Scholar
  50. Guillard C, Beaugiraud B, Dutriez C, Herrmann J-M, Jaffrezic H, Jaffrezic-Renault N, Lacroix M (2002) Physicochemical properties and photocatalytic activities of TiO2-films prepared by sol-gel methods. Appl Catal B Environ 39:331–342.  https://doi.org/10.1016/S0926-3373(02)00120-0CrossRefGoogle Scholar
  51. Hagfeldt A, Graetzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68.  https://doi.org/10.1021/cr00033a003CrossRefGoogle Scholar
  52. Herrmann J-M, Disdier J, Pichat P (1984) Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination. Chem Phys Lett 108:618–622.  https://doi.org/10.1016/0009-2614(84)85067-8CrossRefGoogle Scholar
  53. Hodes G, Manassen J, Cahen D (1977) Photo-electrochemical energy conversion: electrocatalytic sulphur electrodes. J Appl Electrochem 7:181–182.  https://doi.org/10.1007/BF00611041CrossRefGoogle Scholar
  54. Hodes G, Manassen J, Cahen D (1980) Electrocatalytic electrodes for the polysulfide redox system. J Electrochem Soc 127:544–549.  https://doi.org/10.1149/1.2129709CrossRefGoogle Scholar
  55. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96.  https://doi.org/10.1021/cr00033a004CrossRefGoogle Scholar
  56. Horiuchi Y, Toyao T, Takeuchi M, Matsuoka M, Anpo M (2013) Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion – from semiconducting TiO2 to MOF/PCP photocatalysts. Phys Chem Chem Phys 15:13243–13253.  https://doi.org/10.1039/C3CP51427GCrossRefGoogle Scholar
  57. Hu C, Kelm D, Schreiner M, Wollborn T, Mädler L, Teoh WY (2015) Designing photoelectrodes for photocatalytic fuel cells and elucidating the effects of organic substrates. ChemSusChem 8:4005–4015.  https://doi.org/10.1002/cssc.201500793CrossRefGoogle Scholar
  58. Iwu KO, Galeckas A, Kuznetsov AY, Norby T (2013) Solid-state photoelectrochemical H2 generation with gaseous reactants. Electrochim Acta 97:320–325.  https://doi.org/10.1016/j.electacta.2013.03.013CrossRefGoogle Scholar
  59. Jia Q, Iwashina K, Kudo A (2012) Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. Proc Natl Acad Sci U S A 109:11564–11569.  https://doi.org/10.1073/pnas.1204623109CrossRefGoogle Scholar
  60. Kalamaras E, Lianos P (2015) Current doubling effect revisited: current multiplication in a photofuelcell. J Electroanal Chem 751:37–42.  https://doi.org/10.1016/j.jelechem.2015.05.029CrossRefGoogle Scholar
  61. Kalamaras E, Dracopoulos V, Sygellou L, Lianos P (2016) Electrodeposited Ti-doped hematite photoanodes and their employment for photoelectrocatalytic hydrogen production in the presence of ethanol. Chem Eng J 295:288–294.  https://doi.org/10.1016/j.cej.2016.03.062CrossRefGoogle Scholar
  62. Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111:2834–2860.  https://doi.org/10.1021/jp066952uCrossRefGoogle Scholar
  63. Kaneko M, Nemoto J, Ueno H, Gokan N, Ohnuki K, Horikawa M, Saito R, Shibata T (2006) Photoelectrochemical reaction of biomass and bio-related compounds with nanoporous TiO2 film photoanode and O2-reducing cathode. Electrochem Commun 8:336–340.  https://doi.org/10.1016/j.elecom.2005.12.004CrossRefGoogle Scholar
  64. Kaneko M, Ueno H, Saito R, Nemoto J (2009a) Highly efficient photoelectrocatalytic decomposition of biomass compounds using a nanoporous semiconductor photoanode and an O2-reducing cathode with quantum efficiency over 100. Catal Lett 131:184–188.  https://doi.org/10.1007/s10562-009-0011-2CrossRefGoogle Scholar
  65. Kaneko M, Ueno H, Saito R, Suzuki S, Nemoto J, Fujii Y (2009b) Biophotochemical cell (BPCC) to photodecompose biomass and bio-related compounds by UV irradiation with simultaneous electrical power generation. J Photochem Photobiol A Chem 205:168–172.  https://doi.org/10.1016/j.jphotochem.2009.04.024CrossRefGoogle Scholar
  66. Karakitsou KE, Verykios XE (1993) Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. J Phys Chem 97:1184–1189.  https://doi.org/10.1021/j100108a014CrossRefGoogle Scholar
  67. Kawai T, Sakata T (1980) Photocatalytic decomposition of gaseous water over TiO2 and TiO2-RuO2 surfaces. Chem Phys Lett 72:87–89.  https://doi.org/10.1016/0009-2614(80)80247-8CrossRefGoogle Scholar
  68. Khalik WF, Ong S-A, Ho L-N, Wong Y-S, Voon C-H, Yusuf SY, Yusoff NA, Lee S-L (2016) Influence of supporting electrolyte in electricity generation and degradation of organic pollutants in photocatalytic fuel cell. Environ Sci Pollut Res 23:16716–16721.  https://doi.org/10.1007/s11356-016-6840-9CrossRefGoogle Scholar
  69. Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245.  https://doi.org/10.1126/science.1075035CrossRefGoogle Scholar
  70. Kibsgaard J, Jaramillo TF (2014) Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew Chem Int Ed 53:14433–14437.  https://doi.org/10.1002/anie.201408222CrossRefGoogle Scholar
  71. Kim DH, Anderson MA (1994) Photoelectrocatalytic degradation of formic acid using a porous titanium dioxide thin-film electrode. Environ Sci Technol 28:479–483.  https://doi.org/10.1021/es00052a021CrossRefGoogle Scholar
  72. Kim TW, Choi K-S (2014) Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343:990–994.  https://doi.org/10.1126/science.1246913CrossRefGoogle Scholar
  73. Kim T-H, Saito M, Matsuoka M, Tsukada S, Wada K, Anpo M (2009) Photocatalytic oxidation of ethanethiol on a photoelectrochemical circuit system consisting of a rod-type TiO2 electrode and a silicon solar cell. Res Chem Intermed 35:633–642.  https://doi.org/10.1007/s11164-009-0060-6CrossRefGoogle Scholar
  74. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14.  https://doi.org/10.1016/j.apcatb.2003.11.010CrossRefGoogle Scholar
  75. Kumagai H, Minegishi T, Sato N, Yamada T, Kubota J, Domen K (2015) Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se2 photocathodes. J Mater Chem A 3:8300–8307.  https://doi.org/10.1039/C5TA01058FCrossRefGoogle Scholar
  76. Kumar P, Dutta K, Kundu PP (2014a) Enhanced performance of direct methanol fuel cells: a study on the combined effect of various supporting electrolytes, flow channel designs and operating temperatures. Int J Energy Res 38:41–50.  https://doi.org/10.1002/er.3034CrossRefGoogle Scholar
  77. Kumar P, Dutta K, Das S, Kundu PP (2014b) An overview of unsolved deficiencies of direct methanol fuel cell technology: factors and parameters affecting its widespread use. Int J Energy Res 38:1367–1390.  https://doi.org/10.1002/er.3163CrossRefGoogle Scholar
  78. Kumar A, Kumar A, Sharma G et al (2018) Biochar-templated g-C3N4/Bi2O2CO3/CoFe2O4 nano-assembly for visible and solar assisted photo-degradation of paraquat, nitrophenol reduction and CO2 conversion. Chem Eng J 339:393–410.  https://doi.org/10.1016/j.cej.2018.01.105CrossRefGoogle Scholar
  79. Kundu PP, Dutta K (2016) Hydrogen fuel cells for portable applications. In: Ball M, Basile A, Veziroglu TN (eds) Compendium of hydrogen energy, Vol. 4. Hydrogen use, safety and the hydrogen economy, Woodhead Publishing Series in Energy # 86, Ch. 6. Elsevier, Amsterdam, pp 111–131.  https://doi.org/10.1016/B978-1-78242-364-5.00006-3Google Scholar
  80. Kundu PP, Dutta K (2018) Progress and recent trends in microbial fuel cells, 1st edn. Elsevier, Dordrecht.  https://doi.org/10.1016/C2016-0-04695-8CrossRefGoogle Scholar
  81. Latibari ST, Sadrameli SM (2018) Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: an extensive review. Sol Energy 170:1130–1161.  https://doi.org/10.1016/j.solener.2018.05.007CrossRefGoogle Scholar
  82. Lee S-L, Ho L-N, Ong S-A, Lee G-M, Wong Y-S, Voon C-H, Khalik WF, Yusoff NA, Nordin N (2016) Comparative study of photocatalytic fuel cell for degradation of methylene blue under sunlight and ultra-violet light irradiation. Water Air Soil Pollut 227(1–8):445.  https://doi.org/10.1007/s11270-016-3148-9CrossRefGoogle Scholar
  83. Lee S-L, Ho L-N, Ong S-A, Wong Y-S, Voon C-H, Khalik WF, Yusoff NA, Nordin N (2017) A highly efficient immobilized ZnO/Zn photoanode for degradation of azo dye reactive green 19 in a photocatalytic fuel cell. Chemosphere 166:118–125.  https://doi.org/10.1016/j.chemosphere.2016.09.082CrossRefGoogle Scholar
  84. Li Z, Luo W, Zhang M, Feng J, Zou Z (2013) Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ Sci 6:347–370.  https://doi.org/10.1039/C2EE22618ACrossRefGoogle Scholar
  85. Li X, Wang G, Jing L, Ni W, Yan H, Chen C, Yan Y-M (2016a) A photoelectrochemical methanol fuel cell based on aligned TiO2 nanorods decorated graphene photoanode. Chem Commun 52:2533–2536.  https://doi.org/10.1039/C5CC09929CCrossRefGoogle Scholar
  86. Li H, Li F, Wang Y, Bai L, Yu F, Sun L (2016b) Visible-light-driven water oxidation on a photoanode by supramolecular assembly of photosensitizer and catalyst. ChemPlusChem 81:1056–1059.  https://doi.org/10.1002/cplu.201500539CrossRefGoogle Scholar
  87. Li C, Hisatomi T, Watanabe O, Nakabayashi M, Shibata N, Domen K, Delaunay J-J (2016c) Simultaneous enhancement of photovoltage and charge transfer in Cu2O-based photocathode using buffer and protective layers. Appl Phys Lett 109(1–5):033902.  https://doi.org/10.1063/1.4959098CrossRefGoogle Scholar
  88. Liang X, Liu J, Zeng D, Li C, Chen S, Li H (2016) Hydrogen generation promoted by photocatalytic oxidation of ascorbate and glucose at a cadmium sulfide electrode. Electrochim Acta 198:40–48.  https://doi.org/10.1016/j.electacta.2016.03.023CrossRefGoogle Scholar
  89. Lianos P (2011) Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: the concept of the photofuelcell: a review of a re-emerging research field. J Hazard Mater 185:575–590.  https://doi.org/10.1016/j.jhazmat.2010.10.083CrossRefGoogle Scholar
  90. Lianos P (2017) Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Appl Catal B Environ 210:235–254.  https://doi.org/10.1016/j.apcatb.2017.03.067CrossRefGoogle Scholar
  91. Licht S, Hodes G, Tenne R, Manassen J (1987) A light-variation insensitive high efficiency solar cell. Nature 326:863–864.  https://doi.org/10.1038/326863a0CrossRefGoogle Scholar
  92. Lim Y-F, Chua CS, Lee CJJ, Chi D (2014) Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting. Phys Chem Chem Phys 16:25928–25934.  https://doi.org/10.1039/C4CP03241ACrossRefGoogle Scholar
  93. Lin Y, Yuan G, Liu R, Zhou S, Sheehan SW, Wang D (2011) Semiconductor nanostructure-based photoelectrochemical water splitting: a brief review. Chem Phys Lett 507:209–215.  https://doi.org/10.1016/j.cplett.2011.03.074CrossRefGoogle Scholar
  94. Lin C-Y, Mersch D, Jefferson DA, Reisner E (2014) Cobalt sulphide microtube array as cathode in photoelectrochemical water splitting with photoanodes. Chem Sci 5:4906–4913.  https://doi.org/10.1039/C4SC01811GCrossRefGoogle Scholar
  95. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758.  https://doi.org/10.1021/cr00035a013CrossRefGoogle Scholar
  96. Liu H, Cheng S, Wu M, Wu H, Zhang J, Li W, Cao C (2000) Photoelectrocatalytic degradation of sulfosalicylic acid and its electrochemical impedance spectroscopy investigation. J Phys Chem A 104:7016–7020.  https://doi.org/10.1021/jp000171qCrossRefGoogle Scholar
  97. Liu X, Wang F, Wang Q (2012) Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys Chem Chem Phys 14:7894–7911.  https://doi.org/10.1039/C2CP40976CCrossRefGoogle Scholar
  98. Liu C, Dasgupta NP, Yang P (2014) Semiconductor nanowires for artificial photosynthesis. Chem Mater 26:415–422.  https://doi.org/10.1021/cm4023198CrossRefGoogle Scholar
  99. Liu Y, Liu L, Yang F (2016) Energy-efficient degradation of rhodamine B in a LED illuminated photocatalytic fuel cell with anodic Ag/AgCl/GO and cathodic ZnIn2S4 catalysts. RSC Adv 6:12068–12075.  https://doi.org/10.1039/C5RA25557KCrossRefGoogle Scholar
  100. Luo J, Hepel M (2001) Photoelectrochemical degradation of naphthol blue black diazo dye on WO3 film electrode. Electrochim Acta 46:2913–2922.  https://doi.org/10.1016/S0013-4686(01)00503-5CrossRefGoogle Scholar
  101. Maeda Y, Fujishima A, Honda K (1981) The investigation of current doubling reactions on semiconductor photoelectrodes by temperature change measurements. J Electrochem Soc 128:1731–1734.  https://doi.org/10.1149/1.2127720CrossRefGoogle Scholar
  102. Matthews RW (1988) An adsorption water purifier with in situ photocatalytic regeneration. J Catal 113:549–555.  https://doi.org/10.1016/0021-9517(88)90283-7CrossRefGoogle Scholar
  103. Michal R, Sfaelou S, Lianos P (2014) Photocatalysis for renewable energy production using photofuelcells. Molecules 19:19732–19750.  https://doi.org/10.3390/molecules191219732CrossRefGoogle Scholar
  104. Miller EL, Rocheleau RE, Deng XM (2003) Design considerations for a hybrid amorphous silicon/photoelectrochemical multijunction cell for hydrogen production. Int J Hydrog Energy 28:615–623.  https://doi.org/10.1016/S0360-3199(02)00144-1CrossRefGoogle Scholar
  105. Minguez-Bacho I, Courté M, Fan HJ, Fichou D (2015) Conformal Cu2S-coated Cu2O nanostructures grown by ion exchange reaction and their photoelectrochemical properties. Nanotechnology 26(1–10):185401.  https://doi.org/10.1088/0957-4484/26/18/185401CrossRefGoogle Scholar
  106. Mirbagheri N, Wang D, Peng C, Wang J, Huang Q, Fan C, Ferapontova EE (2014) Visible light driven photoelectrochemical water oxidation by Zn- and Ti-doped hematite nanostructures. ACS Catal 4:2006–2015.  https://doi.org/10.1021/cs500372vCrossRefGoogle Scholar
  107. Mishra M, Chun D-M (2015) α-Fe2O3 as a photocatalytic material: a review. Appl Catal A: General 498:126–141.  https://doi.org/10.1016/j.apcata.2015.03.023CrossRefGoogle Scholar
  108. Monfort O, Pop L-C, Sfaelou S, Plecenik T, Roch T, Dracopoulos V, Stathatos E, Plesch G, Lianos P (2016) Photoelectrocatalytic hydrogen production by water splitting using BiVO4 photoanodes. Chem Eng J 286:91–97.  https://doi.org/10.1016/j.cej.2015.10.043CrossRefGoogle Scholar
  109. Monfort O, Sfaelou S, Satrapinskyy L, Plecenik T, Roch T, Plesch G, Lianos P (2017) Comparative study between pristine and Nb-modified BiVO4 films employed for photoelectrocatalytic production of H2 by water splitting and for photocatalytic degradation of organic pollutants under simulated solar light. Catal Today 280:51–57.  https://doi.org/10.1016/j.cattod.2016.07.006CrossRefGoogle Scholar
  110. Mrowetz M, Balcerski W, Colussi AJ, Hoffmann MR (2004) Oxidative Power of nitrogen-doped TiO2 photocatalysts under visible illumination. J Phys Chem B 108:17269–17273.  https://doi.org/10.1021/jp0467090CrossRefGoogle Scholar
  111. Nakade S, Saito Y, Kubo W, Kanzaki T, Kitamura T, Wada Y, Yanagida S (2003) Enhancement of electron transport in nano-porous TiO2 electrodes by dye adsorption. Electrochem Commun 5:804–808.  https://doi.org/10.1016/j.elecom.2003.07.008CrossRefGoogle Scholar
  112. Nandy A, Kumar V, Mondal S, Dutta K, Salah M, Kundu PP (2015) Performance evaluation of microbial fuel cells: effect of varying electrode configuration and presence of a membrane electrode assembly. New Biotechnol 32:272–281.  https://doi.org/10.1016/j.nbt.2014.11.003CrossRefGoogle Scholar
  113. Negishi N, Takeuchi K, Ibusuki T (1998) Surface structure of the TiO2 thin film photocatalyst. J Mater Sci 33:5789–5794.  https://doi.org/10.1023/A:1004441829285CrossRefGoogle Scholar
  114. Nicolau YF (1985) Solution deposition of thin solid compound films by successive ionic-layer adsorption and reaction process. Appl Surf Sci 22-23:1061–1074.  https://doi.org/10.1016/0378-5963(85)90241-7CrossRefGoogle Scholar
  115. Ning F, Shao M, Xu S, Fu Y, Zhang R, Wei M, Evans DG, Duan X (2016) TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy Environ Sci 9:2633–2643.  https://doi.org/10.1039/C6EE01092JCrossRefGoogle Scholar
  116. Nosaka Y, Fox MA (1988) Kinetics for electron transfer from laser-pulse irradiated colloidal semiconductors to adsorbed methylviologen: dependence of the quantum yield on incident pulse width. J Phys Chem 92:1893–1897.  https://doi.org/10.1021/j100318a039CrossRefGoogle Scholar
  117. Nouri E, Mohammadi MR, Lianos P (2016) Impact of preparation method of TiO2-RGO nanocomposite photoanodes on the performance of dye-sensitized solar cells. Electrochim Acta 219:38–48.  https://doi.org/10.1016/j.electacta.2016.09.150CrossRefGoogle Scholar
  118. Nowotny J, Sorrell CC, Sheppard LR, Bak T (2005) Solar-hydrogen: environmentally safe fuel for the future. Int J Hydrog Energy 30:521–544.  https://doi.org/10.1016/j.ijhydene.2004.06.012CrossRefGoogle Scholar
  119. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740.  https://doi.org/10.1038/353737a0CrossRefGoogle Scholar
  120. O’Regan B, Moser J, Anderson M, Graetzel M (1990) Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation. J Phys Chem 94:8720–8726.  https://doi.org/10.1021/j100387a017CrossRefGoogle Scholar
  121. Ohtani B, Iwai K, Nishimoto S-i, Sato S (1997) Role of platinum deposits on titanium(IV) oxide particles: structural and kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions. J Phys Chem B 101:3349–3359.  https://doi.org/10.1021/jp962060qCrossRefGoogle Scholar
  122. Panagiotopoulou P, Antoniadou M, Kondarides DI, Lianos P (2010) Aldol condensation products during photocatalytic oxidation of ethanol in a photoelectrochemical cell. Appl Catal B Environ 100:124–132.  https://doi.org/10.1016/j.apcatb.2010.07.021CrossRefGoogle Scholar
  123. Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461.  https://doi.org/10.1038/nmat3017CrossRefGoogle Scholar
  124. Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28.  https://doi.org/10.1021/nl051807yCrossRefGoogle Scholar
  125. Patsoura A, Kondarides DI, Verykios XE (2006) Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes. Appl Catal B Environ 64:171–179.  https://doi.org/10.1016/j.apcatb.2005.11.015CrossRefGoogle Scholar
  126. Pelentridou K, Stathatos E, Karasali H, Lianos P (2009) Photodegradation of the herbicide azimsulfuron using nanocrystalline titania films as photocatalyst and low intensity black light radiation or simulated solar radiation as excitation source. J Hazard Mater 163:756–760.  https://doi.org/10.1016/j.jhazmat.2008.07.023CrossRefGoogle Scholar
  127. Phuan YW, Chong MN, Zhu T, Yong S-T, Chan ES (2015) Effects of annealing temperature on the physicochemical, optical and photoelectrochemical properties of nanostructured hematite thin films prepared via electrodeposition method. Mater Res Bull 69:71–77.  https://doi.org/10.1016/j.materresbull.2014.12.059CrossRefGoogle Scholar
  128. Potočnik J (2007) Renewable energy sources and the realities of setting an energy agenda. Science 315:810–811.  https://doi.org/10.1126/science.1139086CrossRefGoogle Scholar
  129. Quiñonero J, Lana-Villarreal T, Gómez R (2016) Improving the photoactivity of bismuth vanadate thin film photoanodes through doping and surface modification strategies. Appl Catal B Environ 194:141–149.  https://doi.org/10.1016/j.apcatb.2016.04.057CrossRefGoogle Scholar
  130. Rahman G, Joo O-S (2013) Electrodeposited nanostructured α-Fe2O3 thin films for solar water splitting: Influence of Pt doping on photoelectrochemical performance. Mater Chem Phys 140:316–322.  https://doi.org/10.1016/j.matchemphys.2013.03.042CrossRefGoogle Scholar
  131. Ren K, Gan YX (2012) In: Lallart M (ed) Advances in photoelectrochemical fuel cell research in small-scale energy harvesting. Intech Open, London, pp 3–26.  https://doi.org/10.5772/50799CrossRefGoogle Scholar
  132. Rühl C, Appleby P, Fennema J, Naumov A, Schaffer M (2012) Economic development and the demand for energy: a historical perspective on the next 20 years. Energy Policy 50:109–116.  https://doi.org/10.1016/j.enpol.2012.07.039CrossRefGoogle Scholar
  133. Sahoo SK (2016) Renewable and sustainable energy reviews solar photovoltaic energy progress in India: a review. Renew Sust Energy Rev 59:927–939.  https://doi.org/10.1016/j.rser.2016.01.049CrossRefGoogle Scholar
  134. Salvdor P (1984) Hole diffusion length in n-TiO2 single crystals and sintered electrodes: photoelectrochemical determination and comparative analysis. J Appl Phys 55:2977–2985.  https://doi.org/10.1063/1.333358CrossRefGoogle Scholar
  135. Sayama K, Nomura A, Zou Z, Abe R, Abe Y, Arakawa H (2003) Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chem Commun:2908–2909.  https://doi.org/10.1039/B310428A
  136. Sclafani A, Herrmann J-M (1998) Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media. J Photochem Photobiol A Chem 113:181–188.  https://doi.org/10.1016/S1010-6030(97)00319-5CrossRefGoogle Scholar
  137. Seger B, Lu GQ, Wang L (2012) Electrical power and hydrogen production from a photo-fuel cell using formic acid and other single-carbon organics. J Mater Chem 22:10709–10715.  https://doi.org/10.1039/C2JM16635FCrossRefGoogle Scholar
  138. Selli E, Chiarello GL, Quartarone E, Mustarelli P, Rossetti I, Forni L (2007) A photocatalytic water splitting device for separate hydrogen and oxygen evolution. Chem Commun:5022–5024.  https://doi.org/10.1039/B711747G
  139. Sfaelou S, Lianos P (2016) Photoactivated fuel cells (photofuel cells). An alternative source of renewable energy with environmental benefits. AIMS Mater Sci 3:270–288.  https://doi.org/10.3934/matersci.2016.1.270CrossRefGoogle Scholar
  140. Sfaelou S, Sygellou L, Dracopoulos V, Travlos A, Lianos P (2014) Effect of the nature of cadmium salts on the effectiveness of CdS SILAR deposition and its consequences on the performance of sensitized solar cells. J Phys Chem C 118:22873–22880.  https://doi.org/10.1021/jp505787zCrossRefGoogle Scholar
  141. Sfaelou S, Zhuang X, Feng X, Lianos P (2015) Sulfur-doped porous carbon nanosheets as high performance electrocatalysts for photofuel cells. RSC Adv 5:27953–27963.  https://doi.org/10.1039/C5RA02027ACrossRefGoogle Scholar
  142. Sfaelou S, Pop L-C, Monfort O, Dracopoulos V, Lianos P (2016) Mesoporous WO3 photoanodes for hydrogen production by water splitting and photofuel cell operation. Int J Hydrog Energy 41:5902–5907.  https://doi.org/10.1016/j.ijhydene.2016.02.063CrossRefGoogle Scholar
  143. Sharma G, Bhogal S, Naushad M et al (2017) Microwave assisted fabrication of La/Cu/Zr/carbon dots trimetallic nanocomposites with their adsorptional vs photocatalytic efficiency for remediation of persistent organic pollutants. J Photochem Photobiol A Chem 347:235–243.  https://doi.org/10.1016/j.jphotochem.2017.07.001CrossRefGoogle Scholar
  144. Sharon M (2007) In: Licht S (ed) The photoelectrochemistry of semiconductor/electrolyte solar cells in encyclopedia of electrochemistry: Vol. 6 Semiconductor electrodes and photoelectrochemistry. Wiley, New York, pp 287–316Google Scholar
  145. Shi Z, Wen X, Guan Z, Cao D, Luo W, Zou Z (2015a) Recent progress in photoelectrochemical water splitting for solar hydrogen production. Ann Phys 358:236–247.  https://doi.org/10.1016/j.aop.2015.04.005CrossRefGoogle Scholar
  146. Shi W, Zhang X, Li S, Zhang B, Wang M, Shen Y (2015b) Carbon coated Cu2O nanowires for photo-electrochemical water splitting with enhanced activity. Appl Surf Sci 358:404–411.  https://doi.org/10.1016/j.apsusc.2015.08.223CrossRefGoogle Scholar
  147. Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4:432–439.  https://doi.org/10.1002/cssc.201000416CrossRefGoogle Scholar
  148. Stoll T, Zafeiropoulos G, Tsampas MN (2016) Solar fuel production in a novel polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell with a web of titania nanotube arrays as photoanode and gaseous reactants. Int J Hydrog Energy 41:17807–17817.  https://doi.org/10.1016/j.ijhydene.2016.07.230CrossRefGoogle Scholar
  149. Sudhagar P, Herraiz-Cardona I, Park H, Song T, Noh SH, Gimenez S, Sero IM, Fabregat-Santiago F, Bisquert J, Terashima C, Paik U, Kang YS, Fujishima A, Han TH (2016) Exploring graphene quantum dots/TiO2 interface in photoelectrochemical reactions: solar to fuel conversion. Electrochim Acta 187:249–255.  https://doi.org/10.1016/j.electacta.2015.11.048CrossRefGoogle Scholar
  150. Sui M, Dong Y, You H (2015) Enhanced photocatalytic activity for the degradation of rhodamine B by integrating salinity gradient power into a photocatalytic fuel cell. RSC Adv 5:94184–94190.  https://doi.org/10.1039/C5RA20093HCrossRefGoogle Scholar
  151. Sun C-C, Chou T-C (1998) Kinetics and mechanism of photoelectrochemical oxidation of nitrite ion by using the rutile form of a TiO2/Ti photoelectrode with high electric field enhancement. Ind Eng Chem Res 37:4207–4214.  https://doi.org/10.1021/ie980222uCrossRefGoogle Scholar
  152. Sun C-C, Chou T-C (2000) Electrochemically promoted photocatalytic oxidation of nitrite ion by using rutile form of TiO2/Ti electrode. J Mol Catal A Chem 151:133–145.  https://doi.org/10.1016/S1381-1169(99)00260-5CrossRefGoogle Scholar
  153. Tantis I, Stathatos E, Mantzavinos D, Lianos P (2015) Photoelectrocatalytic degradation of potential water pollutants in the presence of NaCl using nanocrystalline titania films. J Chem Technol Biotechnol 90:1338–1344.  https://doi.org/10.1002/jctb.4549CrossRefGoogle Scholar
  154. Tantis I, Dozzi MV, Bettini LG, Chiarello GL, Dracopoulos V, Selli E, Lianos P (2016) Highly functional titania nanoparticles produced by flame spray pyrolysis. Photoelectrochemical and solar cell applications. Appl Catal B Environ 182:369–374.  https://doi.org/10.1016/j.apcatb.2015.09.040CrossRefGoogle Scholar
  155. Tode R, Ebrahimi A, Fukumoto S, Iyatani K, Takeuchi M, Matsuoka M, Lee CH, Jiang C-S, Anpo M (2010) Photocatalytic decomposition of water on double-layered visible light-responsive TiO2 thin films prepared by a magnetron sputtering deposition method. Catal Lett 135:10–15.  https://doi.org/10.1007/s10562-010-0262-yCrossRefGoogle Scholar
  156. Tollefson J, Monastersky R (2012) The global energy challenge: Awash with carbon. Nature 491:654–655.  https://doi.org/10.1038/491654aCrossRefGoogle Scholar
  157. Ueno H, Nemoto J, Ohnuki K, Horikawa M, Hoshino M, Kaneko M (2009) Photoelectrochemical reaction of biomass-related compounds in a biophotochemical cell comprising a nanoporous TiO2 film photoanode and an O2-reducing cathode. J Appl Electrochem 39:1897–1905.  https://doi.org/10.1007/s10800-009-9897-zCrossRefGoogle Scholar
  158. Vinodgopal K, Wynkoop DE, Kamat PV (1996) Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light. Environ Sci Technol 30:1660–1666.  https://doi.org/10.1021/es950655dCrossRefGoogle Scholar
  159. Vulliet E, Emmelin C, Chovelon J-M, Guillard C, Herrmann J-M (2002) Photocatalytic degradation of sulfonylurea herbicides in aqueous TiO2. Appl Catal B Environ 38:127–137.  https://doi.org/10.1016/S0926-3373(02)00035-8CrossRefGoogle Scholar
  160. Wang W, Serp P, Kalck P, Faria JL (2005a) Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method. Appl Catal B Environ 56:305–312.  https://doi.org/10.1016/j.apcatb.2004.09.018CrossRefGoogle Scholar
  161. Wang W, Serp P, Kalck P, Faria JL (2005b) Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. J Mol Catal A Chem 235:194–199.  https://doi.org/10.1016/j.molcata.2005.02.027CrossRefGoogle Scholar
  162. Wang W, Serp P, Kalck P, Silva CG, Faria JL (2008) Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications. Mater Res Bull 43:958–967.  https://doi.org/10.1016/j.materresbull.2007.04.032CrossRefGoogle Scholar
  163. Wang J, Yu N, Zhang Y, Zhu Y, Fu L, Zhang P, Gao L, Wu Y (2016) Synthesis and performance of Cu2ZnSnS4 semiconductor as photocathode for solar water splitting. J Alloys Compd 688:923–932.  https://doi.org/10.1016/j.jallcom.2016.07.012CrossRefGoogle Scholar
  164. Wang D, Li Y, Puma GL, Lianos P, Wang C, Wang P (2017) Photoelectrochemical cell for simultaneous electricity generation and heavy metals recovery from wastewater. J Hazard Mater 323:681–689.  https://doi.org/10.1016/j.jhazmat.2016.10.037CrossRefGoogle Scholar
  165. Warren SC, Voïtchovsky K, Dotan H, Leroy CM, Cornuz M, Stellacci F, Hébert C, Rothschild A, Grätzel M (2013) Identifying champion nanostructures for solar water-splitting. Nat Mater 12:842–849.  https://doi.org/10.1038/nmat3684CrossRefGoogle Scholar
  166. Wu T, Liu G, Zhao J, Hidaka H, Serpone N (1998) Photoassisted degradation of dye pollutants. V. self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J Phys Chem B 102:5845–5851.  https://doi.org/10.1021/jp980922cCrossRefGoogle Scholar
  167. Xia X-H, Jia Z-J, Yu Y, Liang Y, Wang Z, Ma L-L (2007) Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 45:717–721.  https://doi.org/10.1016/j.carbon.2006.11.028CrossRefGoogle Scholar
  168. Xia L, Bai J, Li J, Zeng Q, Li X, Zhou B (2016a) A highly efficient BiVO4/WO3/W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell. Appl Catal B Environ 183:224–230.  https://doi.org/10.1016/j.apcatb.2015.10.050CrossRefGoogle Scholar
  169. Xia M, Chen R, Zhu X, Liao Q, An L, Wang Z, He X, Jiao L (2016b) A micro photocatalytic fuel cell with an air-breathing, membraneless and monolithic design. Sci Bull 61:1699–1710.  https://doi.org/10.1007/s11434-016-1178-8CrossRefGoogle Scholar
  170. Xu X, Feng B, Zhou G, Bao Z, Hu J (2016) Efficient photon harvesting and charge collection in 3D porous RGO-TiO2 photoanode for solar water splitting. Mater Des 101:95–101.  https://doi.org/10.1016/j.matdes.2016.03.132CrossRefGoogle Scholar
  171. Yang Q, Dionysiou DD (2004) Photolytic degradation of chlorinated phenols in room temperature ionic liquids. J Photochem Photobiol A Chem 165:229–240.  https://doi.org/10.1016/j.jphotochem.2004.03.022CrossRefGoogle Scholar
  172. Yang J, Liao W, Liu Y, Murugananthan M, Zhang Y (2014) Degradation of rhodamine B using a visible-light driven photocatalytic fuel cell. Electrochim Acta 144:7–15.  https://doi.org/10.1016/j.electacta.2014.08.036CrossRefGoogle Scholar
  173. Ye H, Lee J, Jang JS, Bard AJ (2010) Rapid screening of BiVO4-based photocatalysts by scanning electrochemical microscopy (SECM) and studies of their photoelectrochemical properties. J Phys Chem C 114:13322–13328.  https://doi.org/10.1021/jp104343bCrossRefGoogle Scholar
  174. Ying D, Cao R, Li C, Tang T, Li K, Wang H, Wang Y, Jia J (2016) Study of the photocurrent in a photocatalytic fuel cell for wastewater treatment and the effects of TiO2 surface morphology to the apportionment of the photocurrent. Electrochim Acta 192:319–327.  https://doi.org/10.1016/j.electacta.2016.01.210CrossRefGoogle Scholar
  175. Zhang Y, Tang Z-R, Fu X, Xu Y-J (2010) TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 4:7303–7314.  https://doi.org/10.1021/nn1024219CrossRefGoogle Scholar
  176. Zhang Y, Zhang N, Tang Z-R, Xu Y-J (2012) Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C-H bonds under ambient conditions. Chem Sci 3:2812–2822.  https://doi.org/10.1039/C2SC20603JCrossRefGoogle Scholar
  177. Zhang Y, Zhao G, Shi H, Y-n Z, Huang W, Huang X, Wu Z (2015) Photoelectrocatalytic glucose oxidation to promote hydrogen production over periodically ordered TiO2 nanotube arrays assembled of Pd quantum dots. Electrochim Acta 174:93–101.  https://doi.org/10.1016/j.electacta.2015.05.094CrossRefGoogle Scholar
  178. Zheng JY, Son SI, Van TK, Kang YS (2015) Preparation of α-Fe2O3 films by electrodeposition and photodeposition of Co-Pi on them to enhance their photoelectrochemical properties. RSC Adv 5:36307–36314.  https://doi.org/10.1039/C5RA03029CCrossRefGoogle Scholar
  179. Zhou M, Lou XW, Xie Y (2013) Two-dimensional nanosheets for photoelectrochemical water splitting: possibilities and opportunities. Nano Today 8:598–618.  https://doi.org/10.1016/j.nantod.2013.12.002CrossRefGoogle Scholar
  180. Zhu J, Chen F, Zhang J, Chen H, Anpo M (2006) Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization. J Photochem Photobiol A Chem 180:196–204.  https://doi.org/10.1016/j.jphotochem.2005.10.017CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIndian Institute of TechnologyKharagpurIndia
  2. 2.Department of Materials Science and EngineeringCornell UniversityIthacaUSA
  3. 3.Advanced Research School for Technology and Product Simulation (ARSTPS), School for Advanced Research in Polymers (SARP)Central Institute of Plastics Engineering and Technology (CIPET)ChennaiIndia

Personalised recommendations