Physical Features of the Surface Plasmon Polariton

  • Leiva Casemiro OliveiraEmail author
  • Antonio Marcus Nogueira Lima
  • Carsten Thirstrup
  • Helmut Franz Neff
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 70)


The physical features of the surface plasmon polariton are discussed in this chapter.


  1. 1.
    Kasarova, S.N., Sultanova, N.G., Inov, C.D., Nikolov, I.D.: Analysis of the dispersion of optical plastic materials. Opt. Mater. 29, 1481–1490 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Pockrand, I.: Reflection of light from periodically corrugated silver films near the plasma frequency. Phys. Lett. 49(3), 259–260 (1974)CrossRefGoogle Scholar
  3. 3.
    Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer, Berlin (1988)Google Scholar
  4. 4.
    Sharma, A.K., Mohr, G.J.: On the performance of surface plasmon resonance based fibre optic sensor with different bimetallic nanoparticle alloy combinations. J. Phys. D: Appl. Phys. 41, 055106 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Teotia, P.K., Kaler, R.: Multilayer with periodic grating based high performance SPR waveguide sensor. Opt. Commun. 395, 154–158 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Neff, H., Oliveira, L.C., Rodrigures, E.P., Thirstrup, C., Lima, A.M.N.: Enhanced directed radiative surface plasmon emission from periodically corrugated noble metal films. Plasmonics 1, 1–8 (2018)Google Scholar
  7. 7.
    Oliveira, L.C., Lima, A.M.N., Neff, H.H., et al.: Co-existence of radiative and non-radiative surface plasmon resonance modes: power balance and influence of film morphology. Plasmonics 12, 1561–1569 (2017)CrossRefGoogle Scholar
  8. 8.
    Neff, H., Sass, J.K., Lewerenz, H.J.: A photoemission-into-electrolyte study of surface plasmon excitation on high index faces of silver. Surf. Sci. 143, L356–L362 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    Neff, H., Sass, J.K., Lewerenz, H.J., Ibach, H.: Photoemission studies of electron localization at very low excess energies. J. Phys. Chem. 84, 1135 (1980)CrossRefGoogle Scholar
  10. 10.
    Kliewer, K.L., Fuchs, R.: Collective electronic motion in a metallic slab. Phys. Rev. 153, 498–512 (1967)ADSCrossRefGoogle Scholar
  11. 11.
    Kliewer, K.L., Fuchs, R.: Polaritons in metals. Phys. Lett. 27A, 84–85 (1968)ADSCrossRefGoogle Scholar
  12. 12.
    Perner, M., Bost, P., Lemmer, U., von Plessen, G., Feldmann, J., Becker, U., Mennig, M., Schmitt, M., Schmidt, H.: Optically Induced Damping of the Surface Plasmon Resonance in Gold Colloids. Phys. Rev. Lett. 78, 2192–2196 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Sundararaman, R., Narang, P., Jermyn, A.S., Goddard III, W.A., Atwater, H.A.: Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5(5788), 1–8 (2014)Google Scholar
  14. 14.
    Sass, J.K., Laucht, H., Kliewer, K.L.: Photoemission studies of silver with low-energy (3 to 5 eV) obliquely incident light. Phys. Rev. Lett. 35, 1461–1464 (1975)ADSCrossRefGoogle Scholar
  15. 15.
    Link, S., El-Sayed, M.A.: Shape and size dependence of radiative, non-radiative and photo-thermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19, 409–453 (2000)CrossRefGoogle Scholar
  16. 16.
    Boyd, G.T., Yu, Z.H., Shen, Y.R.: Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B 33, 7923–7936 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    Oliveira, L.C., Lima, A.M.N., Thirstrup, C., Neff, H.: Surface Plasmon Resonance Sensors: A Materials Guide to Design and Optimization, SpringerBriefs in Physics (2015)Google Scholar
  18. 18.
    Simon, H.J., Mitchell, D.E., Watson, J.G.: Optical second-harmonic generation with surface plasmons in silver films. Phys. Rev. Lett. 33, 1531–1534 (1974)ADSCrossRefGoogle Scholar
  19. 19.
    Willets, K.A., Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Adleman, J.R., Boyd, D.A., Goodwin, D.G., Psaltis, D.: Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417–4423 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Gryczynski, I., Malicka, J., Gryczynski, Z., Nowaczyk, K., Lakowicz, J.R.: Ultraviolet surface plasmon-coupled emission using thin aluminum films. Anal. Chem. 76, 4076–4081 (2004)CrossRefGoogle Scholar
  22. 22.
    Kretschmann, E.: The angular dependence and the polarization of light emitted by the surface plasmons on metals due to roughness. Opt. Commun. 5, 331–336 (1972)ADSCrossRefGoogle Scholar
  23. 23.
    Kretschmann, E., Raether, H.: Radiative decay of non-radiative surface plasmons excited by light. Zeitschrift f. Naturforschung A 23, 2135–2136 (1968)ADSGoogle Scholar
  24. 24.
    Thirstrup, C., Zong, W., Borre, M., Neff, H., Pedersen, H.C., Holzhueter, G.: Diffractive optical coupling element for surface plasmon resonance sensors. Sens. Actuat. B-Chem. 100, 298–308 (2004)CrossRefGoogle Scholar
  25. 25.
    Sciacca, B., François, A., Klingler-Hoffmann, M., Brazzatti, J., Penno, M., Hoffmann, P., Monro, T.M.: Radiative surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications. Nanomedicine 9, 550–557 (2013)CrossRefGoogle Scholar
  26. 26.
    Oliveira, L.C., Melcher, E.U.K., Thirstrup, C., Lima, A.M.N., Moreira, C.S., Neff, H.: A surface plasmon resonance biochip that operates both in the angular and wavelength interrogation modes. IEEE Trans. Instrum. Meas. 62, 1223–1232 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Leiva Casemiro Oliveira
    • 1
    Email author
  • Antonio Marcus Nogueira Lima
    • 2
  • Carsten Thirstrup
    • 3
  • Helmut Franz Neff
    • 2
  1. 1.Department of Computer Science (DC)Federal University of the Semi-Arid Region (UFERSA)MossoróBrazil
  2. 2.Department of Electrical Engineering (DEE)Federal University of Campina Grande (UFCG)Campina GrandeBrazil
  3. 3.Danish National Metrology InstituteKongens LyngbyDenmark

Personalised recommendations