Advertisement

Homogenization of Piezoelectric Composites with Internal Structure and Inhomogeneous Polarization in ACELAN-COMPOS Finite Element Package

  • T. E. Gerasimenko
  • N. V. Kurbatova
  • D. K. Nadolin
  • A. V. NasedkinEmail author
  • A. A. Nasedkina
  • P. A. Oganesyan
  • A. S. Skaliukh
  • A. N. Soloviev
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 109)

Abstract

The paper presents the current version of the finite element package ACELAN-COMPOS with the focus on its capabilities for solving the homogenization problems for piezoelectric composites with inhomogeneous polarization of piezoceramic phase. We describe the basic version of the effective moduli method, as well as the simplified theoretical approaches for taking into account the inhomogeneous polarization in the finite element solution of the homogenization problems. We provide the brief description of the main features of the ACELAN-COMPOS package, which we use for solving the described problems. The results of the numerical solution of the homogenization problems for porous piezoceramic composites demonstrate the importance of taking into account the inhomogeneous polarization field for the effective moduli determination.

Notes

Acknowledgements

The authors are grateful for the support of the Ministry of Science and Higher Education of the Russian Federation, project No. 9.1001.2017/4.6.

References

  1. 1.
    Barlow, J.: Optimal stress locations in finite element models. Int. J. Numer. Methods Eng. 10, 243–251 (1976)CrossRefGoogle Scholar
  2. 2.
    Bowen, C.R., Perry, A., Lewis, A.C.F., Kara, H.: Processing and properties of porous piezoelectric materials with high hydrostatic figures of merit. J. Eur. Ceram. Soc. 24, 541–545 (2004)CrossRefGoogle Scholar
  3. 3.
    Choudhary, S.K., Grosse, I.R.: Effective stress-based finite element error estimation for composite bodies. Eng. Fract. Mech. 50, 687–701 (1995)CrossRefGoogle Scholar
  4. 4.
    Feng, Z., Rowlands, R.E.: Smoothing finite-element and experimental hybrid technique for stress analyzing composites. Comput. Struct. 39, 631–639 (1991)CrossRefGoogle Scholar
  5. 5.
    Getman, I., Lopatin, S.: Theoretical and experimental investigation of the porous PZT ceramics. Ferroelectrics 186, 301–304 (1996)CrossRefGoogle Scholar
  6. 6.
    Hikita, K., Yamada, K., Nishioka, M., Ono, M.: Effect of porous structure to piezoelectric properties of PZT ceramics. Jpn. J. Appl. Phys. 22, 64–66 (1983)CrossRefGoogle Scholar
  7. 7.
    Iyer, S., Venkatesh, T.A.: Electromechanical response of porous piezoelectric materials: effects of porosity connectivity. Appl. Phys. Lett. 97, 072904 (2010)CrossRefGoogle Scholar
  8. 8.
    Iyer, S., Venkatesh, T.A.: Electromechanical response of (3–0) porous piezoelectric materials: effects of porosity shape. J. Appl. Phys. 110, 034109 (2011)CrossRefGoogle Scholar
  9. 9.
    Khoroshun, L.P., Maslov, B.P., Leshchenko, P.V.: Prediction of Effective Pproperties of Piezoactive Composite Materials. Naukova Dumka, Kiev (1989). (in Russian)Google Scholar
  10. 10.
    Kudimova, A.B., Mikhayluts, I.V., Nadolin, D.K., Nasedkin, A.V., Nasedkina, A.A., Oganesyan, P.A., Soloviev, A.N.: Computer design of porous and ceramic piezocomposites in the finite element package ACELAN. Procedia Struct. Integr. 6, 301–308 (2017)CrossRefGoogle Scholar
  11. 11.
    Kudimova, A.B., Nadolin, D.K., Nasedkin, A.V., Nasedkina, A.A., Oganesyan, P.A., Soloviev, A.N.: Models of porous piezocomposites with 3–3 connectivity type in ACELAN finite element package. Mater. Phys. Mech. 37(1), 16–24 (2018)Google Scholar
  12. 12.
    Kudimova, A.B., Nadolin, D.K., Nasedkin, A.V., Oganesyan, P.A., Soloviev, A.N.: Finite element homogenization models of bulk mixed piezocomposites with granular elastic inclusions in ACELAN package. Mater. Phys. Mech. 37(1), 25–33 (2018)Google Scholar
  13. 13.
    Kurbatova, N.V., Nadolin, D.K., Nasedkin, A.V., Nasedkina, A.A., Oganesyan, P.A., Skaliukh, A.S., Soloviev, A.N.: Models of active bulk composites and new opportunities of ACELAN finite element package. In: Sumbatyan, M.A. (ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials. Ser. Advanced Structured Materials, vol. 59, pp. 133–158. Springer, Singapore (2017)Google Scholar
  14. 14.
    Kurbatova, N.V., Nadolin, D.K., Nasedkin, A.V., Oganesyan, P.A., Soloviev, A.N.: Finite element approach for composite magneto-piezoelectric materials modeling in ACELAN-COMPOS package. In: Altenbach, H., Carrera, E., Kulikov, G. (eds.) Analysis and Modelling of Advanced Structures and Smart Systems. Ser. Advanced Structured Materials, vol. 81, pp. 69–88. Springer, Singapore (2018)CrossRefGoogle Scholar
  15. 15.
    Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day, San Francisco, CA (1963)Google Scholar
  16. 16.
    Lewis, R.W.C., Dent, A.C.E., Stevens, R., Bowen, C.R.: Microstructural modelling of the polarization and properties of porous ferroelectrics. Smart Mater. Struct. 20, 085002 (2011)CrossRefGoogle Scholar
  17. 17.
    Li, J.F., Takagi, K., Ono, M., Pan, W., Watanabe, R., Almajid, A., Taya, M.: Fabrication and evaluation of porous piezoelectric ceramics and porosity-graded piezoelectric actuators. J. Am. Ceram. Soc. 86, 1094–1098 (2003)CrossRefGoogle Scholar
  18. 18.
    Liu, W., Du, L., Wang, Y., Yang, J., Xu, H.: Effects of foam composition on the microstructure and piezoelectric properties of macroporous PZT ceramics from ultrastable particle-stabilized foams. Ceram. Int. 39, 8781–8787 (2013)CrossRefGoogle Scholar
  19. 19.
    Meagher, D.: Octree Encoding: A New Technique for the Representation, Manipulation and Display of Arbitrary 3-D Objects by Computer. (Technical Report IPL-TR-80-111). Rensselaer Polytechnic Institute (1980)Google Scholar
  20. 20.
    Mercadelli, E., Sanson, A., Galassi, C.: Porous piezoelectric ceramics. In: Suaste-Gomez, E. (ed.) Piezoelectric Ceramics, pp. 111–128. InTechOpen (2010)Google Scholar
  21. 21.
    Nan, C.W., Weng, G.J.: Influence of polarization orientation on the effective properties of piezoelectric composites. J. Appl. Phys. 88(1), 416–423 (2000)CrossRefGoogle Scholar
  22. 22.
    Nasedkin, A.V., Shevtsova, M.S.: Improved finite element approaches for modeling of porous piezocomposite materials with different connectivity. In: Parinov, I.A. (ed.) Ferroelectrics and Superconductors: Properties and Applications, pp. 231–254. Nova Science Publications, New York, NY (2011)Google Scholar
  23. 23.
    Nasedkin, A.V., Shevtsova, M.S.: Effective moduli simulation for various types of porous piezoceramic materials. Vestnik DSTU 72–73(3–4), 16–26 (2013). (In Russian)Google Scholar
  24. 24.
    Nasedkin, A.V., Shevtsova, M.S.: Multiscale computer simulation of piezoelectric devices with elements from porous piezoceramics. In: Parinov, I.A., Chang, S.-H. (eds.) Physics and Mechanics of New Materials and their Applications, pp. 185–202. Nova Science Publications, New York, NY (2013)Google Scholar
  25. 25.
    Nasedkin, A., Skaliukh, A., Soloviev, A.: New models of coupled active materials for finite element package ACELAN. AIP Conf. Proc. 1637, 714–723 (2014)CrossRefGoogle Scholar
  26. 26.
    Nasedkin, A.V., Nasedkina, A.A., Rybyanets, A.N.: Numerical analysis of effective properties of heterogeneously polarized porous piezoceramic materials with local alloying pore surfaces. Mater. Phys. Mech. 40(1), 12–21 (2018)Google Scholar
  27. 27.
    Nasedkin, A.V., Kornievsky, A.S.: Finite element homogenization of elastic materials with open porosity at different scale levels. AIP Conf. Proc. 2046, 020064 (2018)CrossRefGoogle Scholar
  28. 28.
    Newnham, R.E., Skinner, D., Cross, L.E.: Connectivity and piezoelectric - pyroelectric composites. Mat. Res. Bull. 13(5), 525–536 (1978)CrossRefGoogle Scholar
  29. 29.
    Nguyen, B.V., Challagulla, K.S., Venkatesh, T.A., Hadjiloizi, D.A., Georgiades, A.V.: Effects of porosity distribution and porosity volume fraction on the electromechanical properties of 3–3 piezoelectric foams. Smart Mater. Struct. 25(12), 125028 (2016)CrossRefGoogle Scholar
  30. 30.
    Odegard, G.M.: Constitutive modeling of piezoelectric polymer composites. Acta Mater. 52(18), 5315–5330 (2004)CrossRefGoogle Scholar
  31. 31.
    Ringgaard, E., Lautzenhiser, F., Bierregaard, L.M., Zawada, T., Molz, E.: Development of porous piezoceramics for medical and sensor applications. Materials. 8(12), 8877–8889 (2015)CrossRefGoogle Scholar
  32. 32.
    Rybyanets, A.N.: Porous ceramic and piezocomposites: modeling, technology, and characterization. In: Newton, A. (ed.) Advances in Porous Ceramics, pp. 53–109. Nova Science Publications, New York, NY (2016)Google Scholar
  33. 33.
    Schwaab, H., Grunbichler, H., Supancic, P., Kamlah, M.: Macroscopical non-linear material model for ferroelectric materials inside a hybrid finite element formulation. Int. J. Solids Struct. 49, 457–469 (2012)CrossRefGoogle Scholar
  34. 34.
    Skaliukh, A.: About mathematical models of irreversible polarization processes of a ferroelectric and ferroelastic polycrystals. In: Irzaman, H. (ed.) Ferroelectrics and Their Applications, pp. 39–70. IntechOpen (2018)Google Scholar
  35. 35.
    Skaliukh, A., Nasedkin, A., Oganesyan, P., Soloviev, A.: Linear and nonlinear models of electroelasticity in the software package ACELAN. In: 2015 Joint IEEE International Symposium on Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoresponse Force Microscopy Workshop (PFM) (ISAF-ISIF-PFM 2015), 24–27 May, 2015, Singapore. IEEE Conference Publications, pp. 36–39 (2015)Google Scholar
  36. 36.
    Skaliukh, A.S., Soloviev, A.N., Oganesyan, P.A.: Modeling of piezoelectric elements with inhomogeneous polarization in ACELAN. Ferroelectrics 483(1), 95–101 (2015)CrossRefGoogle Scholar
  37. 37.
    Soloviev, A.N., Oganesyan, P.A., Skaliukh, A.S.: Modeling of piezoelectric elements with inhomogeneous polarization by using ACELAN. In: Parinov, I.A., Chang, S.-H., Theerakulpisut, S. (eds.) Advanced Materials - Studies and Applications, pp. 169–192. Nova Science Publications, New York, NY (2015)Google Scholar
  38. 38.
    Song, K.N.: A procedure for the improved continuous stress field of composite media. KSME Int. J. 12, 871–880 (1998)CrossRefGoogle Scholar
  39. 39.
    Stark, S., Neumeister, P., Balke, H.: A hybrid phenomenological model for ferroelectroelastic ceramics. Part I: single phased materials. J. Mech. Phys. Solids. 95, 774–804 (2016)CrossRefGoogle Scholar
  40. 40.
    Topolov, V.Y., Bowen, C.R., Bisegna, P.: Piezo-Active Composites: Microgeometry-Sensitivity Relations. Springer, Berlin (2018)CrossRefGoogle Scholar
  41. 41.
    Yang, A.K., Wang, C.A., Guo, R., Huang, Y.: Microstructure and electrical properties of porous PZT ceramics fabricated by different methods. J. Am. Ceram. Soc. 93, 1984–1990 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • T. E. Gerasimenko
    • 1
  • N. V. Kurbatova
    • 1
  • D. K. Nadolin
    • 1
  • A. V. Nasedkin
    • 1
    Email author
  • A. A. Nasedkina
    • 1
  • P. A. Oganesyan
    • 1
  • A. S. Skaliukh
    • 1
  • A. N. Soloviev
    • 2
  1. 1.Institute of Mathematics, Mechanics and Computer ScienceSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Department of Theoretical and Applied MechanicsDon State Technical UniversityRostov-on-DonRussia

Personalised recommendations