Electro-Magneto-Elastic Coupled Waves in Piezoactive Periodic Structures

  • Karen B. GhazaryanEmail author
  • Davit G. Piliposyan
  • Gayane T. Piliposian
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 109)


Based on the complete set of Maxwell’ electrodynamics equations and the theory of elasticity the two-dimensional equations have obtained describing the coupled wave process in piezoactive electro-magneto-elastic (MEE) structure and allowing solution of a new class of problems, in particular, the problems of propagation and internal resonance of electro-magneto-elastic waves in periodic MEE structures. For longitudinal lattice vibrations of oppositely polarized MEE periodic superlattice the effect of phonon–photon polariton is investigated with a full three-phase coupling between elastic, electromagnetic fields. The results show that the new coupled phonon–photon polariton exhibits properties different from piezoelectric or piezomagneticpolaritons.


  1. 1.
    Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature. V 442, 759–765 (2006)CrossRefGoogle Scholar
  2. 2.
    Nan, C.-W., et al.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101–33 (2008)Google Scholar
  3. 3.
    Pakam, N., Arockiarajan, A.: An analytical model for predicting the effective properties of magneto-electro-elastic (MEE) composites. Comput. Mater. Sci. 65, 19–28 (2012)Google Scholar
  4. 4.
    Lee, J., Boyd, J.G., Lagoudas, D.C.: Effective properties of three-phase electro-magneto-elastic composites. Int. J. Eng. Sci. 43(10), 790–825 (2005)CrossRefGoogle Scholar
  5. 5.
    Du, J., Jin, X., Wang, J.: Love wave propagation in layered magneto-electro-elastic structures with initial stress. Acta Mech. 192(1–4), 169–189 (2007)CrossRefGoogle Scholar
  6. 6.
    Mai, Y.W., Niraula, O.P., Wang, B.L.: A horizontal shear surface wave in magnetoelectroelastic materials. Philos. Mag. Lett. 87(1), 53–58 (2007)CrossRefGoogle Scholar
  7. 7.
    Wei, W.-Y., Liu, J.-X., Fang, D.-N.: Existence of shear horizontal surface waves in a magneto-electro-elastic material. Chin. Phys. Lett. 26(10), 104301 (2009)CrossRefGoogle Scholar
  8. 8.
    Piliposyan, D.: Shear surface waves at the interface of two magneto-electro-elastic media. Multidiscip. Model. Mater. Struct. 8(3), 417–426 (2012)CrossRefGoogle Scholar
  9. 9.
    Yu, L., et al.: Piezoelectric wafer active sensors for in situ ultrasonic-guided wave SHM. Fatigue Fract. Eng. Mater. Struct. 31(8), 611–628 (2008)CrossRefGoogle Scholar
  10. 10.
    Li, S.: The electromagneto-acoustic surface wave in a piezoelectric medium: the bleustein-gulyaev mode. J. Appl. Phys. 80(9), 5264–5269 (1996)CrossRefGoogle Scholar
  11. 11.
    Belubekyan, M.V.: Screen surface shear wave in a piezo-active semi-space of hexagonal symmetry. 2008. In: Proceedings of the 6th International Conference Problems of Dynamics of Interaction of Deformable Media, Yerevan, pp. 125–130Google Scholar
  12. 12.
    Piliposian, G.T., Avetisyan, A.S., Ghazaryan, K.B.: Shear wave propagation in periodic phononic/photonic piezoelectric medium. Wave Motion 49(1), 125–134 (2012)CrossRefGoogle Scholar
  13. 13.
    Piliposyan, D.G., Ghazaryan, K.B., Piliposian, G.T.: Shear Bloch waves and coupled phonon–polariton in periodic piezoelectric waveguides. Ultrasonics 54(2), 644–654 (2014)CrossRefGoogle Scholar
  14. 14.
    Liu, H., et al.: Coupling of electromagnetic waves and superlattice vibrations in a piezomagnetic superlattice: Creation of a polariton through the piezomagnetic effect. Phys. Rev. B 71(12), 125106 (2005)CrossRefGoogle Scholar
  15. 15.
    Zhang, X.-J., et al.: Phonon-polariton dispersion and the polariton based photonic band gap in piezoelectric superlattices. Phys. Rev. B 69(8), 085118 (2004)CrossRefGoogle Scholar
  16. 16.
    Huang, C., Zhu, Y.: Piezoelectric-induced polariton coupling in a superlattice. Phys. Rev. Lett. 94(11), 117401 (2005)CrossRefGoogle Scholar
  17. 17.
    Zhu, Y., et al.: New type of polariton in a piezoelectric superlattice. Phys. Rev. Lett. 90(5), 053903 (2003)CrossRefGoogle Scholar
  18. 18.
    Piliposyan, D., Ghazaryan, K., Piliposian, G.: Magneto-electro-elastic polariton coupling in a periodic structure. J. Phys. D: Appl. Phys. 48(17), 175501 (2015)Google Scholar
  19. 19.
    Yakhno, V.G, Yakhno, T.M.: Maxwell’s equations for bi-anisotropic materials as a symmetric hyperbolic system: Theory and computer application. In: 2011 International Conference on 2011 Electromagnetics in Advanced Applications (ICEAA), pp. 50–53Google Scholar
  20. 20.
    Auld, B.A.: Acoustic Fields and Waves in Solids. Wiley, New York (1973)Google Scholar
  21. 21.
    Xue, C.X,E.: Pan, On the longitudinal wave along a functionally graded magneto-electro-elastic rod. Int. J. Eng. Sci. 62, 48–55 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Karen B. Ghazaryan
    • 1
    Email author
  • Davit G. Piliposyan
    • 1
  • Gayane T. Piliposian
    • 2
  1. 1.Institute of Mechanics, National Academy of SciencesYerevanArmenia
  2. 2.Department of Mathematical SciencesThe University of LiverpoolLiverpoolUK

Personalised recommendations