Advertisement

Numerical Investigation of Effective Moduli of Porous Elastic Material with Surface Stresses for Various Structures of Porous Cells

  • A. V. NasedkinEmail author
  • A. S. Kornievsky
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 109)

Abstract

The chapter deals with the model problem of finding the effective moduli of a nanoporous elastic material, in which the surface stresses are defined on the pore surface to reflect the size effect using the Gurtin–Murdoch model. One cell of a porous material in the form of a cube with one pore located in the center is considered. The objective of the study is to assess the influence of the pore shape and the magnitude of the scale factors on the effective moduli of the composite material. The homogenization problem is formulated within the framework of the effective moduli method, and to find its solution, the finite element method and the ANSYS software package are used. In the finite element model, the surface stresses are taken into account by membrane elements covering the pore surfaces and conformable with the finite element mesh of bulk elements. Numerical experiments carried out for pores of cubic and spherical shapes show the cumulative significant effect of pore geometry and scale factors on the effective elastic moduli.

Notes

Acknowledgements

This work was supported by the Russian Science Foundation (grant number 15–19-10008-P).

References

  1. 1.
    Brisard, S., Dormieux, L., Kondo, D.: Hashin-Shtrikman bounds on the bulk modulus of a nanocomposite with spherical inclusions and interface effects. Comp. Mater. Sci. 48, 589–596 (2010)CrossRefGoogle Scholar
  2. 2.
    Brisard, S., Dormieux, L., Kondo, D.: Hashin-Shtrikman bounds on the shear modulus of a nanocomposite with spherical inclusions and interface effects. Comp. Mater. Sci. 50, 403–410 (2010)CrossRefGoogle Scholar
  3. 3.
    Chatzigeorgiou, G., Javili, A., Steinmann, P.: Multiscale modelling for composites with energetic interfaces at the micro-or nanoscale. Math. Mech. Solids. 20, 1130–1145 (2015)CrossRefGoogle Scholar
  4. 4.
    Chatzigeorgiou, G., Meraghni, F., Javili, A.: Generalized interfacial energy and size effects in composites. J. Mech. Phys. Solids. 106, 257–282 (2017)CrossRefGoogle Scholar
  5. 5.
    Chen, T., Dvorak, G.J., Yu, C.C.: Solids containing spherical nano-inclusions with interface stresses: effective properties and thermal-mechanical connections. Int. J. Solids Struct. 44, 941–955 (2007)CrossRefGoogle Scholar
  6. 6.
    Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Eshelby formalism for nano-inhomogeneities. Proc. R. Soc. A. 461, 3335–3353 (2005)CrossRefGoogle Scholar
  7. 7.
    Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids. 53, 1574–1596 (2005)CrossRefGoogle Scholar
  8. 8.
    Duan, H.L., Wang, J., Huang, Z.P., Luo, Z.Y.: Stress concentration tensors of inhomogeneities with interface effects. Mech. Mater. 37, 723–736 (2005)CrossRefGoogle Scholar
  9. 9.
    Duan, H.L., Wang, J., Karihaloo, B.L., Huang, Z.P.: Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Materialia. 54, 2983–2990 (2006)CrossRefGoogle Scholar
  10. 10.
    Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech. 227, 29–42 (2016)CrossRefGoogle Scholar
  11. 11.
    Eremeyev, V., Morozov, N.: The effective stiffness of a nanoporous rod. Dokl. Physics. 55(6), 279–282 (2010)CrossRefGoogle Scholar
  12. 12.
    Gad, A.I., Mahmoud. F.F., Alshorbagy. A.E., Ali-Eldin. S.S.: Finite element modeling for elastic nano-indentation problems incorporating surface energy effect. Int. J. Mech. Sciences. 84, 158–170 (2014)Google Scholar
  13. 13.
    Gao, W., Yu, S.W., Huang, G.Y.: Finite element characterization of the size-dependent mechanical behaviour in nanosystem. Nanotechnology 17, 1118–1122 (2006)CrossRefGoogle Scholar
  14. 14.
    Gu, S.-T., Liu, J.-T., He, Q.-C.: Size-dependent effective elastic moduli of particulate composites with interfacial displacement and traction discontinuities. Int. J. Solids Struct. 51, 2283–2296 (2014)CrossRefGoogle Scholar
  15. 15.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Rat. Mech. Analysis. 57(4), 291–323 (1975)CrossRefGoogle Scholar
  16. 16.
    Hamilton, J.C., Wolfer, W.G.: Theories of surface elasticity for nanoscale objects. Surface Sci. 603, 1284–1291 (2009)CrossRefGoogle Scholar
  17. 17.
    Javili, A., Chatzigeorgiou, G., McBride, A.T., Steinmann, P., Linder, C.: Computational homogenization of nano-materials accounting for size effects via surface elasticity. GAMM-Mitteilungen 38(2), 285–312 (2015)CrossRefGoogle Scholar
  18. 18.
    Javili, A., McBride, A., Mergheima, J., Steinmann, P., Schmidt, U.: Micro-to-macro transitions for continua with surface structure at the microscale. Int. J. Solids Struct. 50, 2561–2572 (2013)CrossRefGoogle Scholar
  19. 19.
    Javili, A., McBride, A., Steinmann, P.: Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl. Mech. Rev. 65, 010802-1–31 (2013)Google Scholar
  20. 20.
    Javili, A., Steinmann, P.: A finite element framework for continua with boundary energies. Part I: the two-dimensional case. Comput. Methods Appl. Mech. Engrg. 198, 2198–2208 (2009)Google Scholar
  21. 21.
    Javili, A., Steinmann, P.: A finite element framework for continua with boundary energies. Part II: The three-dimensional case. Comput. Methods Appl. Mech. Engrg. 199, 755–765 (2010)Google Scholar
  22. 22.
    Jeong, J., Cho, M., Choi, J.: Effective mechanical properties of micro/nano-scale porous materials considering surface effects. Interact. Multiscale Mech. 4(2), 107–122 (2011)CrossRefGoogle Scholar
  23. 23.
    Kushch, V.I., Mogilevskaya, S.G., Stolarski, H.K., Crouch, S.L.: Elastic fields and effective moduli of particulate nanocomposites with the Gurtin-Murdoch model of interfaces. Int. J. Solids Struct. 50, 1141–1153 (2013)CrossRefGoogle Scholar
  24. 24.
    Le Quang, H., He, Q.-C.: Variational principles and bounds for elastic inhomogeneous materials with coherent imperfect interfaces. Mech. Mater. 40, 865–884 (2008)CrossRefGoogle Scholar
  25. 25.
    Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology. 11, 139–147 (2000)Google Scholar
  26. 26.
    Nasedkin, A.V., Kornievsky, A.S.: Finite element modeling and computer design of anisotropic elastic porous composites with surface stresses. In: M.A. Sumbatyan (Ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials. Ser. Advanced Structured Materials, vol. 59, pp. 107–122. Springer, Singapore (2017)Google Scholar
  27. 27.
    Nasedkin, A.V., Kornievsky, A.S.: Finite element modeling of effective properties of elastic materials with random nanosized porosities. ycisl. meh. splos. sred – Computational Continuum Mechanics. 10(4), 375–387 (2017)Google Scholar
  28. 28.
    Nasedkin, A.V., Kornievsky, A.S.: Finite element homogenization of elastic materials with open porosity at different scale levels. AIP Conf. Proc. 2046, 020064 (2018)Google Scholar
  29. 29.
    Nasedkin, A.V., Nasedkina, A.A., Kornievsky, A.S.: Modeling of nanostructured porous thermoelastic composites with surface effects. AIP Conf. Proc. 1798, 020110 (2017)Google Scholar
  30. 30.
    Nasedkin, A.V., Nasedkina, A.A., Kornievsky, A.S.: Finite element modeling of effective properties of nanoporous thermoelastic composites with surface effects. In: Greece. M. Papadrakakis, E. Onate, B.A. Schrefler (eds.) Coupled Problems 2017 - Proceeding VII International Conference on Coupled Problems in Science and Engineering, 12–14 June 2017, pp. 1140–1151. Rhodes Island, CIMNE, Barcelona, Spain (2017)Google Scholar
  31. 31.
    Nazarenko, L., Bargmann, S., Stolarski, H.: Energy-equivalent inhomogeneity approach to analysis of effective properties of nanomaterials with stochastic structure. Int. J. Solids Struct. 59, 183–197 (2015)CrossRefGoogle Scholar
  32. 32.
    Riaz, U., Ashraf, S.M.: Application of Finite Element Method for the Design of Nanocomposites. In: Musa, S.M. (ed.), Computational Finite Element Methods in Nanotechnology, pp. 241–290. CRC Press (2012)Google Scholar
  33. 33.
    Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)Google Scholar
  34. 34.
    Tian, L., Rajapakse, R.K.N.D.: Finite element modelling of nanoscale inhomogeneities in an elastic matrix. Comp. Mater. Sci. 41, 44–53 (2007)CrossRefGoogle Scholar
  35. 35.
    Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mechanica Solida Sinica. 24(1), 52–82 (2011)CrossRefGoogle Scholar
  36. 36.
    Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sin. 32(1), 83–100 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Mathematics, Mechanics and Computer ScienceSouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations