Advertisement

The Ecological Significance of Parasitic Crustaceans

  • Paul C. Sikkel
  • Rachel L. Welicky
Chapter
Part of the Zoological Monographs book series (ZM, volume 3)

Abstract

Despite that aquatic parasite diversity and abundance likely surpasses that of terrestrial parasites, our understanding of aquatic parasites lags far behind our knowledge of terrestrial parasites. This is undoubtedly attributable to our being terrestrial primates and the associated logistical challenges of studying most aquatic environments. However, with improving technology that allows for more extended exploration of aquatic environments and the continued maturation of host-parasite ecology and functional biodiversity as fields of inquiry, our understanding of parasitic crustaceans is rapidly extending beyond identification and description of life cycles to describing the role of parasites in ecosystems. Both field and laboratory studies have demonstrated that parasitic organisms play critical roles at the individual, population and community levels. In this chapter, we explore these roles for parasitic isopods and copepods in particular and highlight recent studies that employ current methodologies in ecological research such as molecular and stable isotope analyses. This chapter should demonstrate to readers that there are still far more questions than answers about the role of parasitic Crustacea in aquatic systems, but based on what we know today, we can say they are likely one of the most critical players in aquatic ecosystem dynamics.

Notes

Acknowledgements

We thank the multitude of collaborators, students and volunteers who have assisted with our research over the years, which would not have been possible without the generous financial support of the US National Science Foundation, Puerto Rico Sea Grant, Earthwatch Institute, the Falconwood Corporation, the National Research Foundation of South Africa and the Claude Leon Foundation of South Africa. Many thanks go to the NOAA Okeanos Explorer Program, Andrea M. Quattrini and Amanda W.J. Demopoulos for the images used in Fig. 10.9. We are also extremely grateful to the staff of the field stations where we have conducted our research, including the University of the Virgin Islands MacLean Marine Science Center, Virgin Islands Environmental Resource Station, UPRM Isla Magueyes Marine Laboratory, Guana Island, Silliman University Marine Laboratory and Lizard Island Research Station. Finally, we thank the editors of this book and the anonymous reviewers whose critiques and suggestions contributed significantly to the improvement of the manuscript.

References

  1. Abe T, Sekiguchi K, Onishi H, Muramatsu K, Kamito T (2012) Observations on a school of ocean sunfish and evidence for a symbiotic cleaning association with albatrosses. Mar Biol 159:1173–1176CrossRefGoogle Scholar
  2. Adlard RD, Lester RJG (1994) Dynamics of the interaction between the parasitic isopod, Anilocra pomacentri, and the coral reef fish, Chromis nitida. Parasitology 109:311–324PubMedCrossRefPubMedCentralGoogle Scholar
  3. Adlard RD, Miller TL, Smit NJ (2015) The butterfly effect: parasite diversity, environment, and emerging disease in aquatic wildlife. Trends Parasitol 31(4):160–166PubMedCrossRefPubMedCentralGoogle Scholar
  4. Albright R, Langdon C (2011) Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Glob Change Biol 17:2478–2487CrossRefGoogle Scholar
  5. Amanieu M (1963) Evolution des populations de Paragnathia formica (Hesse) au cours d’un cycle annuel. Bull Inst Océanogr, Monaco 60:1–12Google Scholar
  6. Amundsen PA, Lafferty KD, Knudsen R, Primicerio R, Klemetsen A, Kuris AM (2009) Food web topology and parasites in the pelagic zone of a subarctic lake. J Anim Ecol 78:563–572PubMedCrossRefPubMedCentralGoogle Scholar
  7. Aneesh P-T, Sudha K, Arshad K, Anilkumar G, Trilles J-P (2013) Seasonal fluctuation of the prevalence of cymothoids representing the genus Nerocila (Crustacea, Isopoda), parasitizing commercially exploited marine fishes from the Malabar Coast, India. Acta Parasitologica 58:80–90PubMedCrossRefPubMedCentralGoogle Scholar
  8. Arias-González JE, Morand S (2006) Trophic functioning with parasites: a new insight for ecosystem analysis. Mar Ecol Prog Ser 320:43–53CrossRefGoogle Scholar
  9. Arnal C, Côté IM (2000) Diet of broadstripe cleaning gobies on a Barbadian reef. J Fish Biol 57:1075–1082CrossRefGoogle Scholar
  10. Arnal C, Morand S (2001) Importance of ectoparasites and mucus in cleaning interactions in the Mediterranean cleaner wrasse Symphodus melanocercus. Mar Biol 138:777–784CrossRefGoogle Scholar
  11. Artim JM, Sikkel PC (2013) Live coral repels a common reef-fish ectoparasite. Coral Reefs 32:487–494CrossRefGoogle Scholar
  12. Artim JM, Sikkel PC (2016) Comparison of sampling methodologies and estimation of population parametres for a temporary fish ectoparasite. Int J Parasitol Parasites Wildl 5:145–157PubMedPubMedCentralCrossRefGoogle Scholar
  13. Artim JM, Sellers JC, Sikkel PC (2015) Micropredation by gnathiid isopods on settlement–stage larval reef fish in the Eastern Caribbean Sea. Bull Mar Sci 91:479–487CrossRefGoogle Scholar
  14. Artim JM, Hook A, Grippo RS, Sikkel PC (2017) Predation on parasitic gnathiid isopods on coral reefs: a comparison of Caribbean cleaning gobies with non-cleaning microcarnivores. Coral Reefs 36(4):1213–1223CrossRefGoogle Scholar
  15. Athanassopoulou FD, Bouboulis B, Martinsen B (2001) In vitro treatments of deltamethrin against the isopod parasite Anylocra physodes, a pathogen of sea bass Dicentrarchus labrax. L. Bull Eur Assoc Fish Pathol 21:26–29Google Scholar
  16. Beaugrand G, Reid PC, Ibañez F, Planque B (2000) Biodiversity of North Atlantic and North Sea caanoid copepods. Mar Ecol Prog Ser 204:299–303CrossRefGoogle Scholar
  17. Becker JHA, Grutter AS (2004) Cleaner shrimp do clean. Coral Reefs 23:515–520Google Scholar
  18. Behrens JW, Seth H, Axelsson M, Buchmann K (2014) The parasitic copepod Lernaeocera branchialis negatively affects cardiorespiratory function in Gadus morhua. J Fish Biol 84:1599–1606PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bergeron DH, Perkins PJ (2014) Evaluating the usefulness of three indices for assessing winter tick abundance in northern New Hampshire. Alces 50:1–15Google Scholar
  20. Binning SA, Roche DG, Layton C (2013) Ectoparasites increase swimming costs in a coral reef fish. Biol Lett 9:20120927PubMedPubMedCentralCrossRefGoogle Scholar
  21. Binning SA, Barnes JI, Davies JN, Backwell PRY, Keogh JS, Roche DG (2014) Ectoparasites modify escape behaviour, but not performance, in a coral reef fish. Anim Behav 93:1–7CrossRefGoogle Scholar
  22. Binning SA, Roche DG, Grutter AS, Colosio S, Sun D, Miest J, Bshary R (2018) Cleaner wrasse indirectly affect the cognitive performance of a damselfish through ectoparasite removal. Proc R Soc B 285:20172447PubMedCrossRefPubMedCentralGoogle Scholar
  23. Blakeslee AMH, Fowler AE, Keogh CL (2013) Marine invasions and parasite escape: updates and new perspectives. In: Lesser MP (ed) Advances in marine biology, 1st edn. Academic Press, Cambridge, pp 87–169Google Scholar
  24. Blasco-Costa I, Rouco C, Pouli R (2015) Biogeography of parasitism in freshwater fish: spatial patterns in hot spots of infection. Ecography 38:301–310CrossRefGoogle Scholar
  25. Boag B, Neilson R, Robinson D, Scrimgeour CM, Handley LL (1998) Wild rabbit host and some parasites show trophic–level relationships for δ13C and δ15N: a first report. Isotope Environ Health Stud 34:81–85CrossRefGoogle Scholar
  26. Bonaldo RM, Grutter AS, Sazima I, Krajewski JP (2015) 24/7 service: nocturnal cleaning in a tropical Indo-Pacific reef. Mar Biodivers 45(4):611–612CrossRefGoogle Scholar
  27. Bowman TE (1960) Description and notes on the biology of Lironeca puhi, n. sp. (Isopoda: Cymothoidae), parasite of the Hawaiian moray eel Gymnothorax eurostus (Abbott). Crustaceana 1:84–91CrossRefGoogle Scholar
  28. Boxshall GA (1974) The population dynamics of Lepeophtheirus pectoralis (Müller): seasonal variation in abundance and age structure. Parasitology 69:361–371PubMedCrossRefPubMedCentralGoogle Scholar
  29. Boxshall G (2005) Crustacean parasites. In: Rohde K (ed) Marine parasitology. CSIRO Publishing, Clayton, pp 123–169Google Scholar
  30. Brønseth T, Folstad I (1997) The effect of parasites on courtship dance in threespine stickle-backs: more than meets the eye? Can J Zool 75:589–594CrossRefGoogle Scholar
  31. Brooker AJ, Shinn AP, Bron JE (2007) A review of the biology of the parasitic copepod Lernaeocera branchialis (L., 1767) (Copepoda: Pennellidae). Adv Parasitol 65:297–341PubMedCrossRefPubMedCentralGoogle Scholar
  32. Brooks KM (2005) The effects of water temperature, salinity, and currents on the survival and distribution of the infective copepodid stage of sea lice (Lepeophtheirus salmonis) originating on Atlantic salmon farms in the Broughton Archipelago of British Columbia, Canada. Rev Fish Sci 13(3):177–204CrossRefGoogle Scholar
  33. Brooks DR, Hoberg EP (2007) How will global climate change affect parasite–host assemblages? Trends Parasitol 23(12):571–574PubMedCrossRefPubMedCentralGoogle Scholar
  34. Bruce NL (1987a) Australian Pleopodias Richardson, 1910 and Anilocra Leach, 1818 (Isopoda: Cymothoidae), crustacean parasites of marinefishes. Rec Aust Mus 39:85–130CrossRefGoogle Scholar
  35. Bruce NL (1987b) Australian Renocila Miers, 1880 (Isopoda: Cymothoidae), crustacean parasites of marine fishes. Rec Aust Mus 39:169–182CrossRefGoogle Scholar
  36. Brusca RC (1978) Studies on the cymothoid fish symbionts of the eastern Pacific (Isopoda, Cymothoidae) I. Biology of Nerocila californica. Crustaceana 34:141–154CrossRefGoogle Scholar
  37. Budge SM, Wooller MJ, Springer AM, Iverson SJ, McRoy CP, Divoky GJ (2008) Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis. Oecologia 157:117–129PubMedCrossRefPubMedCentralGoogle Scholar
  38. Bunkley-Williams L, Williams EH (1998a) Isopods associated with fishes: a synopsis and corrections. J Parasitol 84:893–896PubMedCrossRefPubMedCentralGoogle Scholar
  39. Bunkley-Williams L, Williams EH (1998b) Ability of Pederson cleaner shrimp to remove juveniles of the parasitic cymothoid isopod, Anilocra haemuli, from the host. Crustaceana 71:862–869CrossRefGoogle Scholar
  40. Byers JE (2009) Including parasites in food webs. Trends Parasitol 25:55–57PubMedCrossRefPubMedCentralGoogle Scholar
  41. Cacabelos E, Olabarria C, Incera M (2010) Effects of habitat structure and tidal height on epifaunal assemblages associated with macroalgae. Estuaries Coast Shelf Sci 89:43e52Google Scholar
  42. Cantrell CE, Henry RP, Chadwick NE (2015) Nitrogen transfer in a Caribbean mutualistic network. Mar Biol 162:1–12CrossRefGoogle Scholar
  43. Carr MH, Hixon MA (1995) Predation effects on early post-settlement survivorship of coral-reef fishes. Mar Ecol Prog Ser 124:31–42CrossRefGoogle Scholar
  44. Chambers SD, Sikkel PC (2002) Diel emergence patterns of ecologically important, fish parasitic, Gnathiid isopod larvae on Caribbean coral reefs. Caribb J Sci 38:37–43Google Scholar
  45. Cheney KL, Côté IM (2005) Mutualism or parasitism? The variable outcome of cleaning symbioses. Biol Lett 1:162–165PubMedPubMedCentralCrossRefGoogle Scholar
  46. Chew LL, Chong VC, Ooi AL, Sasekumar A (2015) Vertical migration and positioning behavior of copepods in a mangrove estuary: interactions between tidal, diel light and lunar cycles. Estuaries Coast Shelf Sci 152:142–152CrossRefGoogle Scholar
  47. Cizauskas CA, Carlson CJ, Burgio KR, Clements CF, Dougherty ER, Harris NC, Phillips AJ (2017) Parasite vulnerability to climate change: an evidence-based functional trait approach. Roy Soc Open Sci 4:160535CrossRefGoogle Scholar
  48. Clague GE, Cheney KL, Goldzien AW, McCormick MI, Waldie PA, Grutter AS (2011) Long-term cleaner fish presence affects growth of a coral reef fish. Biol Lett 7:863–865PubMedPubMedCentralCrossRefGoogle Scholar
  49. Clutton-Brock T (2007) Sexual selection in males and females. Science 318:1882–1885PubMedCrossRefPubMedCentralGoogle Scholar
  50. Clutton-Brock T, Parker G (1992) Potential reproductive rates and the operation of sexual selection. Q Rev Biol 67:437–456CrossRefGoogle Scholar
  51. Cocheret De La Morinière E, Pollux BJA, Nagelkerken I, Hemminga MA, Huiskes AHL, van der Velde G (2003) Ontogenetic dietary changes of coral reef fishes in the mangrove–seagrass–reef continuum: stable isotope and gut content analysis. Mar Ecol Prog Ser 246:279–289CrossRefGoogle Scholar
  52. Coetzee ML, Smit NJ, Grutter AS, Davies AJ (2009) Gnathia trimaculata n. sp. (Crustacea: Isopoda: Gnathiidae), an ectoparasite found parasitising requiem sharks from off Lizard Island, Great Barrier Reef, Australia. Syst Parasitol 72:97–112PubMedCrossRefPubMedCentralGoogle Scholar
  53. Cohen BF, Poore GC (1994) Phylogeny and biogeography of the Gnathiidae (Crustacea: Isopoda) with descriptions of new genera and species, most from south-eastern Australia. Mem Mus Victoria 54:271–397CrossRefGoogle Scholar
  54. Coile AM, Sikkel PC (2013) An experimental field test of susceptibility to ectoparasitic gnathiid isopods among Caribbean reef fishes. Parasitology 140:888–896PubMedCrossRefPubMedCentralGoogle Scholar
  55. Coile AM, Welicky RL, Sikkel PC (2014) Female Gnathia marleyi (Isopoda: Gnathiidae) feeding on more susceptible fish hosts produce larger but not more offspring. Parasitol Res 113:3875–3880PubMedCrossRefGoogle Scholar
  56. Connors BM, Krkosek M, Dill LM (2008) Sea lice escape predation on their host. Biol Lett 4:455–457PubMedPubMedCentralCrossRefGoogle Scholar
  57. Connors BM, Lagasse C, Dill LM (2011) What’s love got to do with it? Ontogenetic changes in drivers of dispersal in a marine ectoparasite. Behav Ecol 22:588–593CrossRefGoogle Scholar
  58. Cook CA, Sikkel PC, Renoux LP, Smit NJ (2015) Blood parasite biodiversity of reef-associated fishes of the eastern Caribbean. Mar Ecol Prog Ser 533:1–13CrossRefGoogle Scholar
  59. Costello MJ (2006) Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol 22(10):475–483PubMedCrossRefPubMedCentralGoogle Scholar
  60. Côté IM (2000) Evolution and ecology of cleaning symbioses in the sea. Mar Bio Oceanogr Ann Rev 38:311–355Google Scholar
  61. Côté IM, Molloy PP (2003) Temporal variation in cleanerfish and client behaviour: does it reflect ectoparasite availability? Ethology 109:487–499CrossRefGoogle Scholar
  62. Côté IM, Soares MC (2011) Gobies as cleaners. In: Patzner RA, Van Tassel JL, Kovacic M, Kapoor BG (eds) The biology of gobies. Science, Jersey, pp 531–558Google Scholar
  63. Curtis LM, Grutter AS, Smit NJ, Davies AJ (2013) Gnathia aureamaculosa, a likely definitive host of Haemogregarina balistapi and potential vector for Haemogregarina bigemina between fishes of the Great Barrier Reef, Australia. Int J Parasitol 43:361–370PubMedCrossRefPubMedCentralGoogle Scholar
  64. Davies AJ (1982) Further studies on Haemogregarina bigemina Laveran & Mesnil, the marine fish Blennius pholis, L. and the isopod Gnathia maxillaris. J Protozool 29:576–583CrossRefGoogle Scholar
  65. Davies AJ (1995) The biology of fish haemogregarines. Adv Parasitol 36:118–203Google Scholar
  66. Davies AJ, Smit NJ (2001) The life cycle of Haemogregarina bigemina (Adeleina: Haemogregarinidae) in South African hosts. Folia Parasitol 48(3):169–177CrossRefGoogle Scholar
  67. Davies AJ, Eiras JC, Austin RTE (1994) Investigations into the transmission of Haemogregarina bigemina Laveran & Mesnil, 1901 (Apicomplexa: Adeleorina) between intertidal fishes in Portugal. J Fish Dis 17:283–289CrossRefGoogle Scholar
  68. Davies AJ, Curtis L, Grutter AS, Smit NJ (2009) Suspected viral erythrocytic necrosis (VEN) in a blackbar triggerfish, Rhinecanthus aculeatus, from Lizard Island, Great Barrier Reef, Australia. Mar Biodivers Rec 2:1–4CrossRefGoogle Scholar
  69. De Troch M, Boeckx P, Cnudde C, Van Gansbeke D, Vanreusel A, Vincx M, Caramujo MJ (2012) Bioconversion of fatty acids at the basis of marine food webs: insights from a compound-specific stable isotope analysis. Mar Ecol Prog Ser 465:53–67CrossRefGoogle Scholar
  70. Demopoulos AW, Sikkel PC (2015) Enhanced understanding of ectoparasite–host trophic linkages on coral reefs through stable isotope analysis. Int J Parasitol Parasites Wildl 4:125–134PubMedPubMedCentralCrossRefGoogle Scholar
  71. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351CrossRefGoogle Scholar
  72. Deudero S, Pinnegar JK, Polunin NVC (2002) Insights into fish host–parasite trophic relation-ships revealed by stable isotope analysis. Dis Aquat Org 52:77–86PubMedCrossRefPubMedCentralGoogle Scholar
  73. Doi H, Yurlova NI, Vodyanitskaya SN, Kanaya G, Shikano S, Kikuchi E (2010) Estimating isotope fractionation between cercariae and host snail with the use of isotope measurement designed for very small organisms. J Parasitol 96:314–317PubMedCrossRefPubMedCentralGoogle Scholar
  74. Doucett RR, Booth RK, Power G, McKinley RS (1999) Effects of the spawning migration on the nutritional status of anadromous Atlantic salmon (Salmo salar): insights from stable–isotope analysis. Can J Fish Aquat Sci 56:2172–2180CrossRefGoogle Scholar
  75. Dunlap DS, Ng TF, Rosario K, Barbosa JG, Greco AM, Breitbart M, Hewson I (2013) Molecular and microscopic evidence of viruses in marine copepods. Proc Natl Acad Sci 110(4):1375–1380PubMedCrossRefPubMedCentralGoogle Scholar
  76. Dunne JA, Lafferty KD, Dobson AP, Hechinger RF, Kuris AM et al (2013) Parasites affect food web structure primarily through increased diversity and complexity. PLoS Biol 11:e1001579PubMedPubMedCentralCrossRefGoogle Scholar
  77. Escribano R, Hidalgo P (2000) Spatial distribution of copepods in the north of the Humboldt Current region off Chile during coastal upwelling. J Mar Biol Assoc UK 80:283–290CrossRefGoogle Scholar
  78. Farquharson C, Smit NJ, Sikkel PC (2012) Description of a new species of gnathiid (Crustacea, Isopoda, Gnathiidae) from the Caribbean. Zootaxa 3381:47–61CrossRefGoogle Scholar
  79. Ferreira ML, Smit NJ, Grutter AS, Davies AJ (2009) A new species of gnathiid (Crustacea: Isopoda) parasitizing teleosts from Lizard Island, Great Barrier Reef, Australia. J Parasitol 95:1066–1075PubMedCrossRefPubMedCentralGoogle Scholar
  80. Finley RJ, Forrester GE (2003) Impact of ectoparasites on the demography of a small reef fish. Mar Ecol Prog Ser 248:305–309CrossRefGoogle Scholar
  81. Fitze PS, Tschirren B, Richner H (2004) Life history and fitness consequences of ectoparasites. J Anim Ecol 73:216–226CrossRefGoogle Scholar
  82. Flamarique IN, Browman HI, Belanger M, Boxaspen K (2000) Ontogenetic changes in visual sensitivity of the parasitic salmon louse Lepeophtheirus salmonis. J Exp Biol 203:649–1657Google Scholar
  83. Floeter SR, Vazquez DP, Grutter AS (2007) The macroecology of marine cleaning mutualisms. J Anim Ecol 76:105–111PubMedCrossRefPubMedCentralGoogle Scholar
  84. Fogelman RM, Grutter AS (2008) Mancae of the parasitic cymothoid isopod, Anilocra apogonae: early life history, host-specificity, and effect on growth and survival of preferred young cardinal fishes. Coral Reefs 27:685–693CrossRefGoogle Scholar
  85. Fogelman RM, Kuris AM, Grutter AS (2009) Parasitic castration of a vertebrate: effect of the cymothoid isopod, Anilocra apogonae, on the five–lined cardinalfish, Cheilodipterus quinquelinatus. Int J Parasitol 39:577–583PubMedCrossRefPubMedCentralGoogle Scholar
  86. Folstad I, Hope AM, Karter A, Skorping A (1994) Sexually selected color in male Sticklebacks – a signal of both parasite exposure and parasite resistance. Oikos 69:511–515CrossRefGoogle Scholar
  87. Forrester GE, Finley RJ (2006) Parasitism and a shortage of refuges jointly mediate the strength of density dependence in a reef fish. Ecology 87:1110–1115PubMedCrossRefPubMedCentralGoogle Scholar
  88. Frazer LN (2009) Sea-cage aquaculture, sea lice, and declines of wild fish. Conserv Biol 23(3):599–607PubMedCrossRefPubMedCentralGoogle Scholar
  89. Gaard E, Gislason A, Falkenhau T, Søiland H, Musaeva E, Vereshchaka A, Vinogradov G (2008) Horizontal and vertical copepod distribution and abundance on the Mid-Atlantic Ridge in June 2004. Deep Sea Res Part II Topical Stud Oceanogr 55:59–71CrossRefGoogle Scholar
  90. Galil BS (2000) A sea under siege–alien species in the Mediterranean. Biol Invasions 2:177–186CrossRefGoogle Scholar
  91. Giorgi MS, Arlettaz R, Guillaume F, Nussle S, Ossola C, Vogel P, Christie P (2004) Causal mechanisms underlying host specificity in bat ectoparasites. Oecologia 138:648–654PubMedCrossRefPubMedCentralGoogle Scholar
  92. Gomez-Diaz E, Gonzalez-Solis J (2010) Trophic structure in a seabird host–parasite food web: insights from stable isotope analyses. PLoS One 5:533546CrossRefGoogle Scholar
  93. Gorlick DL, Atkins PD, Losey GS (1978) Cleaning stations as water holes, garbage dumps, and sites for evolution of reciprocal altruism. Am Nat 112:341–353CrossRefGoogle Scholar
  94. Gorlick D, Atkins P, Losey G (1987) Effect of cleaning by Labroides dimidiatus (Labridae) on an ectoparasite population infecting Pomacentrus vaiuli (Pomacentridae) at Enewetak Atoll. Copeia 1987:41–45CrossRefGoogle Scholar
  95. Graça-Souza AV, Maya-Monteiro C, Paiva-Silva GO, Braz GR, Paes MC, Sorgine MH, Oliveira MF, Oliveira PL (2006) Adaptations against heme toxicity in blood–feeding arthropods. Insect Biochem Mol Biol 36:322–335PubMedCrossRefPubMedCentralGoogle Scholar
  96. Green SJ, Côté IM (2014) Trait-based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities. J Anim Ecol 83:1451–1460PubMedCrossRefPubMedCentralGoogle Scholar
  97. Grutter AS (1995) Relationship between cleaning rates and ectoparasite loads in coral reef fishes. Mar Ecol Prog Ser 118:51–58CrossRefGoogle Scholar
  98. Grutter AS (1996) Parasite removal rates by the cleaner wrasse Labroides dimidiatus. Mar Ecol Prog Ser 130:61–70CrossRefGoogle Scholar
  99. Grutter AS (1997a) Spatio-temporal variation and feeding selectivity in the diet of the cleaner fish Labroides dimidiatus. Copeia 1997:46–355CrossRefGoogle Scholar
  100. Grutter AS (1997b) Size-selective predation by the cleaner fish Labroides dimidiatus. J Fish Biol 50:1303–1308Google Scholar
  101. Grutter AS (1999) Infestation dynamics of gnathiid isopod juveniles parasitic on the coral-reef fish Hemigymnus melapterus (Labridae). Mar Biol 61:545–552CrossRefGoogle Scholar
  102. Grutter AS (2001) Parasite infection rather than tactile stimulation is the proximate cause of cleaning behaviour in reef fish. Proc R Soc Lond 268:1361–1365CrossRefGoogle Scholar
  103. Grutter AS (2002) Cleaning symbioses from the parasites’ perspective. Parasitology 124:65–81CrossRefGoogle Scholar
  104. Grutter AS, Feeney WE (2016) Equivalent cleaning in a juvenile facultative and obligate cleaning wrasse: an insight into the evolution of cleaning in labrids? Coral Reefs 35(3):991–997CrossRefGoogle Scholar
  105. Grutter AS, Pankhurst NW (2000) The effects of capture, handling, confinement and ectoparasite load on plasma levels of cortisol, glucose and lactate in the coral reef fish Hemigymnus melapterus. J Fish Biol 57:391–401CrossRefGoogle Scholar
  106. Grutter AS, Poulin R (1998) Intraspecific and interspecific relationships between host size and the abundance of parasitic larval gnathiid isopods on coral reef fishes. Mar Ecol Prog Ser 164:263–271CrossRefGoogle Scholar
  107. Grutter AS, Lester RJG, Greenwood J (2000) Emergence rates from the benthos of the parasitic juveniles of gnathiid isopods. Mar Ecol Prog Ser 207:123–127CrossRefGoogle Scholar
  108. Grutter AS, Murphy J, Choat H (2003) Cleaner fish drives local fish diversity on coral reefs. Curr Biol 13:64–67PubMedCrossRefPubMedCentralGoogle Scholar
  109. Grutter AS, Pickering JL, McCallum H, McCormick MI (2008) Impact of micropredatory gnathiid isopods on young coral reef fishes. Coral Reefs 27:655–661CrossRefGoogle Scholar
  110. Grutter AS, Rumney JG, Sinclair-Taylor T, Waldie P, Franklin CE (2011) Fish mucous cocoons: the ‘mosquito nets’ of the sea. Biol Lett 7:292–294PubMedCrossRefPubMedCentralGoogle Scholar
  111. Grutter AS, Blomberg SP, Fargher B, Kuris AM, McCormick MI, Warner RR (2017) Size-related mortality due to gnathiid isopod micropredation correlates with settlement size in coral reef fishes. Coral Reefs 36:549–559CrossRefGoogle Scholar
  112. Grutter AS, De Brauwer M, Bshary R, Cheney KL, Cribb TH, Madin EMP, McClure EC, Meekan MG, Sun D, Warner RR, Werminghausen J, Sikkel PC (2018) Parasite infestation increases on coral reefs without cleaner fish. Coral Reefs 37:15–24CrossRefGoogle Scholar
  113. Guimarães PR, Sazima C, Reis SF, Sazima I (2007) The nested structure of marine cleaning symbiosis: is it like flowers and bees? Biol Lett 3:51–54PubMedCrossRefPubMedCentralGoogle Scholar
  114. Hadfield KA, Bruce NL, Smit NJ (2013) Review of the fish–parasitic genus Cymothoa Fabricius, 1783 (Isopoda, Cymothoidae, Crustacea) from the south-western Indian Ocean, including a new species from South Africa. Zootaxa 3640:152–176PubMedCrossRefPubMedCentralGoogle Scholar
  115. Hadfield KA, Bruce NL, Smit NJ (2014) Review of the fish parasitic genus Ceratothoa Dana, 1852 (Crustacea, Isopoda, Cymothoidae) from South Africa, including the description of two new species. ZooKeys 400:1–42CrossRefGoogle Scholar
  116. Hadfield KA, Bruce NL, Smit NJ (2015) Review of Mothocya Costa, in Hope, 1851 (Crustacea: Isopoda: Cymothoidae) from southern Africa, with the description of a new species. Afr Zool 50:147–163CrossRefGoogle Scholar
  117. Hadfield KA, Bruce NL, Smit NJ (2016) Redescription of poorly known species of Ceratothoa Dana, 1852 (Crustacea, Isopoda, Cymothoidae), based on original type material. ZooKeys 592:39–91CrossRefGoogle Scholar
  118. Hall ER, Vaughan D, Crosby MP (2012) Development of ocean acidification flow-thru experimental raceway units (OAFTERU). In: Proceedings of the 12th international coral reef symposium 34236:9–13Google Scholar
  119. Hatcher MJ, Dunn AM (2011) Parasites in ecological communities: from interactions to ecosystems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  120. Hayes PM, Smit NJ, Grutter AS, Davies AJ (2011) Unexpected response of a captive blackeye thicklip, Hemigymnus melapterus (Bloch), from Lizard Island, Australia, exposed to juvenile Gnathia aureamaculosa Ferreira & Smit, isopods. J Fish Dis 34:563–566PubMedCrossRefPubMedCentralGoogle Scholar
  121. Heagney EC, Gillanders BM, Suthers IM (2013) The effect of parasitism by a blood-feeding isopod on the otolith chemistry of host fish. Mar Freshw Res 64:10–19CrossRefGoogle Scholar
  122. Heckmann R (2003) Other ectoparasites infesting fish: Copepods, branchiurans, isopods, mites and bivalves. Aquac Mag Ark 29:20–31Google Scholar
  123. Heuch PA, Parsons A, Boxaspen K (1995) Diel vertical migration: a possible host–finding mechanism in salmon louse (Lepeophtheirus salmonis) copepodids? Can J Fish Aquat Sci 52:681–689CrossRefGoogle Scholar
  124. Heupel MR, Bennett MB (1999) The occurrence, distribution and pathology associated with gnathiid isopod larvae infecting the epaulette shark, Hemiscyllium ocellatum. Int J Parasitol 29:321–330PubMedCrossRefPubMedCentralGoogle Scholar
  125. Hevrøy EM, Boxaspen K, Oppedal F, Taranger GL, Holm JC (2003) The effect of artificial light treatment and depth on the infestation of the sea louse Lepeophtheirus salmonis on Atlantic salmon (Salmo salar L.) culture. Aquaculture 220:1–14CrossRefGoogle Scholar
  126. Hixon MA (2015) Predation: piscivory and the ecology of coral–reef fishes. In: Mora C (ed) Ecology of fishes on coral reefs. Cambridge University Press, Cambridge, pp 41–54CrossRefGoogle Scholar
  127. Hobson ES (1971) Cleaning symbiosis among California inshore fishes. Fish Bull 69:491–524Google Scholar
  128. Holdich DM, Harrison K (1980) The crustacean isopod genus Gnathia Leach from Queensland waters with descriptions of nine new species. J Mar Freshw Res 31:215–240CrossRefGoogle Scholar
  129. Honma Y, Chiba A (1991) Pathological changes in the branchial chamber wall of stingrays, Dasyatis spp., associated with the presence of juvenile gnathiids (Isopoda, Crustacea). Fish Pathol 26:9–16CrossRefGoogle Scholar
  130. Horton T, Okamura B (2003) Post-haemorrhagic anaemia in sea bass, Dicentrarchus labrax (L.), caused by blood feeding of Ceratothoa oestroides (Isopoda: Cymothoidae). J Fish Dis 26:401–406PubMedCrossRefPubMedCentralGoogle Scholar
  131. Hsieh CHH, Chiu TS, Shih CT (2004) Copepod diversity and composition as indicators of intrusion of the Kuroshio Branch Current into the Northern Taiwan Strait in spring 2000. Zool Stud 43:393–403Google Scholar
  132. Hudson PJ, Dobson AP, Lafferty KD (2006) Is a healthy ecosystem one that is rich in parasites? Trends Ecol Evol 21:381–385CrossRefPubMedGoogle Scholar
  133. Huebner LK, Chadwick NE (2012a) Patterns of cleaning behaviour on coral reef fish by the anemoneshrimp Ancylomenes pedersoni. J Mar Biol Assoc UK 92:1557–1562CrossRefGoogle Scholar
  134. Huebner LK, Chadwick NE (2012b) Reef fishes use sea anemones as visual cues for cleaning interactions with shrimp. J Exp Mar Biol Ecol 417:237–242CrossRefGoogle Scholar
  135. Iken K, Brey T, Wand U, Voigt J, Junghans P (2001) Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Prog Oceanogr 50:383–405CrossRefGoogle Scholar
  136. Incze LS, Hebert D, Wolff N, Oakey N, Dye D (2001) Changes in copepod distributions associated with increased turbulence from wind stress. Mar Ecol Prog Ser 213:229–240CrossRefGoogle Scholar
  137. Jacoby CA, Greenwood JG (1988) Spatial, temporal, and behavioral patterns in emergence of zooplankton in the lagoon of Heron Reef, Great Barrier Reef, Australia. Mar Biol 97:309–328CrossRefGoogle Scholar
  138. Jenkins WG, Demopoulos AWJ, Sikkel PC (2018a) Effects of host injury on susceptibility of marine reef fishes to ectoparasitic gnathiid isopods. Symbiosis 75:113–121CrossRefGoogle Scholar
  139. Jenkins WG, Demopoulos AW, Sikkel PC (2018b) Host feeding ecology and trophic position significantly influence isotopic discrimination between a generalist ectoparasite and its hosts: Implications for parasite-host trophic studies. Food Webs 16:e00092CrossRefGoogle Scholar
  140. Johannesen A (1978) Early stages of Lepeophtheirus salmonis (Copepoda: Caligidae). Sarsia 63:169–176CrossRefGoogle Scholar
  141. Johnson SC, Treasurer JW, Bravo S, Nagasawa K, Kabata Z (2004) A review of the impact of parasitic copepods on marine aquaculture. Zool Stud 43:229–243Google Scholar
  142. Johnson PTJ, Dobson A, Lafferty KD, Marcogliese DJ, Memmott J, Orlofske SA, Poulin R, Thieltges DW (2010) When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol Evol 25:362–371CrossRefPubMedGoogle Scholar
  143. Jones CM, Grutter AS (2005) Parasitic isopods (Gnathia sp.) reduce haematocrit in captive Hemigymnus melapterus (Bloch) (Pisces: Labridae) on the Great Barrier Reef. J Fish Biol 66:860–864CrossRefGoogle Scholar
  144. Jones CM, Grutter AS (2007) Variation in emergence of parasitic and predatory isopods among habitats at Lizard Island, Great Barrier Reef. Mar Biol 150:919–927CrossRefGoogle Scholar
  145. Jones CM, Grutter AS (2008) Reef-based micropredators reduce the growth of post-settlement damselfish in captivity. Coral Reefs 27:677–684CrossRefGoogle Scholar
  146. Jones SR, Hargreaves NB (2007) The abundance and distribution of Lepeophtheirus salmonis (Copepoda: Caligidae) on pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon in coastal British Columbia. J Parasitol 93:1324–1331PubMedCrossRefPubMedCentralGoogle Scholar
  147. Jones CM, Nagel L, Hughes GL, Cribb TH, Grutter AS (2007) Host specificity of two species of Gnathia (Isopoda) determined by DNA sequencing blood meals. Int J Parasitol 37:927–935PubMedCrossRefPubMedCentralGoogle Scholar
  148. Jones CM, Miller TL, Grutter AS, Cribb TH (2008) Natatory–stage cymothoid isopods: description, molecular identification and evolution of attachment. Int J Parasitol 38:477–491PubMedCrossRefPubMedCentralGoogle Scholar
  149. Jormalainen V, Honkanen T, Makinen A, Hemmi A, Vesakoski O (2001) Why does herbivore sex matter? Sexual differences in utilization of Fucus vesiculosus by the isopod Idotea baltica. Oikos 93:77–86CrossRefGoogle Scholar
  150. Kabata Z, Cousens B (1977) Host–parasite relationships between sockeye salmon, Oncorhynchus nerka, and Salmincola californiensis (Copepoda: Lernaeopodidae). J Fish Board Can 34:191–202CrossRefGoogle Scholar
  151. Kensley B (1998) Estimates of species diversity of free-living marine isopod crustaceans on coral reefs. Coral Reefs 17:83–88CrossRefGoogle Scholar
  152. Khokhlova IS, Serobyan V, Degen AA, Krasnov BR (2010) Host gender and offspring quality in a flea parasitic on a rodent. J Exp Biol 213:3299–3304PubMedCrossRefGoogle Scholar
  153. Krasnov BR, Poulin R, Shenbrot GI, Mouillot D, Khokhlova IS (2004) Ectoparasitic “jacks-of-all-trades”: relationship between abundance and host specificity in fleas (Siphonaptera) parasitic on small mammals. Am Nat 164:506–516PubMedGoogle Scholar
  154. Krkošek M, Revie CW, Gargan PG, Skilbrei OT, Finstad B, Todd CD (2013) Impact of parasites on salmon recruitment in the Northeast Atlantic Ocean. Proc R Soc B Biol Sci 280:20122359CrossRefGoogle Scholar
  155. Kuris AM, Hechinger RF, Shaw JC, Whitney KL, Aguirre-Macedo L, Boch CA, Dobson AP et al (2008) Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454:515–518CrossRefPubMedPubMedCentralGoogle Scholar
  156. Lafferty KD, Kuris AM (1999) How environmental stress affects the impacts of parasites. Limnol Oceanog 44:925–931CrossRefGoogle Scholar
  157. Lafferty KD, Dobson AP, Kuris AM (2006) Parasites dominate food web links. Proc Natl Acad Sci USA 103:11211–11216PubMedCrossRefGoogle Scholar
  158. Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, Dunne JA, Johnson PTJ, Kuris AM, Marcogliese DJ, Martinez ND, Memmott J, Marquet PA, McLaughlin JP, Mordecai EA, Mercedes P, Poulin R, Thieltges DW (2008) Parasites in food webs: the ultimate missing links. Ecol Lett 11:533–546PubMedPubMedCentralCrossRefGoogle Scholar
  159. Leray M, Knowlton N (2014) DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc Natl Acad Sci 112:2076–2081CrossRefGoogle Scholar
  160. Limbaugh C (1961) Cleaning symbiosis. Sci Am 205:42–49CrossRefGoogle Scholar
  161. Loot G, Poulet N, Reyjol Y, Blanchet S, Lek S (2004) The effects of the ectoparasite Tracheliastes polycolpus (Copepoda: Lernaeopodidae) on the fins of rostrum dace (Leuciscus leuciscus bur-digalensis). Parasitol Res 94:16–23PubMedCrossRefGoogle Scholar
  162. Losey GS (1972) Ecological importance of cleaning symbiosis. Copeia 1972:820–833CrossRefGoogle Scholar
  163. Losey GS (1974) Cleaning symbiosis in Puerto Rico with comparison to the tropical Pacific. Copeia 1974:960–970CrossRefGoogle Scholar
  164. Mackas DL, Sefton H, Miller CB, Raich A (1993) Vertical habitat partitioning by large calanoid copepods in the oceanic subarctic Pacific during spring. Prog Oceanogr 32:259–294CrossRefGoogle Scholar
  165. Mackenzie K (1999) Parasites as pollution indicators in marine ecosystems: a proposed early warning system. Marine Poll Bull 38:955–959CrossRefGoogle Scholar
  166. Manship BM, Walker AJ, Jones LA, Davies AJ (2011) Blood feeding in juvenile Paragnathia formica (Isopoda: Gnathiidae): biochemical characterization of trypsin inhibitors, detection of antico-agulants, and molecular identification of fish hosts. Parasitology 139:744–754CrossRefGoogle Scholar
  167. Maran BA, Moon SY, Ohtsuka S, Oh SY, Soh H-Y, Myoung J-G, Iglikowska A, Boxshall GA (2013) The caligid life cycle: new evidence from Lepeophtheirus elegans reconciles the cycles of Caligus and Lepeophtheirus (Copepoda: Caligidae). Parasite 20:1–15CrossRefGoogle Scholar
  168. Marcogliese DJ (2001) Implications of climate change for parasitism of animals in the aquatic environment. Can J Zool 79(8):1331–1352CrossRefGoogle Scholar
  169. Marcogliese DJ (2008) The impact of climate change on the parasites and infectious diseases of aquatic animals. Rev Sci Tech 27(2):467–484PubMedCrossRefGoogle Scholar
  170. Marcogliese D, Cone D (1997) Food webs: a plea for parasites. Trends Ecol Evol 12:320–325CrossRefPubMedGoogle Scholar
  171. Marzal A, de Lope F, Navarro C, Møller AP (2005) Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142:541–545PubMedCrossRefGoogle Scholar
  172. McCutchan JH Jr, Lewis WM Jr, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390CrossRefGoogle Scholar
  173. Meadows DW, Meadows CM (2003) Behavioral and ecological correlates of foureye butterflyfish, Chaetodon capistratus, (Perciformes: Chaetodontidae) infected with Anilocra chaetodontis (Isopoda: Cymothoidae). Rev Biol Trop 51(Suppl 4):77–81PubMedPubMedCentralGoogle Scholar
  174. Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecol Lett 13:838–848PubMedCrossRefPubMedCentralGoogle Scholar
  175. Meyer JL, Schultz ET (1985) Migrating haemulid fishes as a source of nutrients and organic matter on coral reefs. Limnol Oceanogr 30:146–156CrossRefGoogle Scholar
  176. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140CrossRefGoogle Scholar
  177. Monod T (1926) Les Gnathiidae. Essai Monographique (Morphologie, Biologie, Systématique). Mémoires de la Société Royale des Sciences naturelles du Maroc 13:1–668Google Scholar
  178. Morand S, Arias González E (1997) Is parasitism a missing ingredient in model ecosystems? Ecol Model 95:61–74CrossRefGoogle Scholar
  179. Mordue AJ, Birkett MA (2009) A review of host finding behaviour in the parasitic sea louse, Lepeophtheirus salmonis (Caligidae: Copepoda). J Fish Dis 32:3–13CrossRefGoogle Scholar
  180. Mugridge RER, Stallybrass HG (1983) A mortality of eels, Anguilla anguilla L., attributed to Gnathiidae. J Fish Biol 6:81–82Google Scholar
  181. Nagasawa K (2001) Annual changes in the population size of the salmon louse Lepeophtheirus salmonis (Copepoda: Caligidae) on high–seas Pacific salmon (Oncorhynchus spp.), and relationship to host abundance. Hydrobiologia 453:411–416CrossRefGoogle Scholar
  182. Nagasawa K, Ishida Y, Ogura M, Tadokoro K, Hiramatsu K (1993) The abundance and distribution of Lepeophtheirus salmonis (Copepoda: Caligidae) on six species of Pacific salmon in offshore waters of the North Pacific Ocean and Bering Sea. Pathog Wild Farmed Fish Sea Lice 1:166–178Google Scholar
  183. Nagel L, Grutter AS (2007) Host preference and specialisation in Gnathia sp., a common parasitic isopod of coral reef fishes. J Fish Biol 70:497–508CrossRefGoogle Scholar
  184. Nagel L, Montgomerie R, Lougheed S (2008) Evolutionary divergence in common marine ec-toparasites Gnathia spp. (Isopoda: Gnathiidae) on the Great Barrier Reef: phylogeography, morphology, and behaviour. Biol J Linnean Soc 94:569–587CrossRefGoogle Scholar
  185. Narvaez P, Barreiros JP, Soares MC (2015) The parasitic isopod Anilocra physodes, as a novel food source for the lizardfish Synodus saurus (Synodontidae). Cybium 39:313–314Google Scholar
  186. Neilson R, Boag B, Hartley G (2005) Temporal host–parasite relationships of the wild rabbit, Oryctolagus cuniculus (L.) as revealed by stable isotope analyses. Parasitology 131:279–285PubMedCrossRefPubMedCentralGoogle Scholar
  187. Nie P, Yao WJ (2000) Seasonal population dynamics of parasitic copepods, Sinergasilus spp. on farmed fish in China. Aquacult 187:239–245CrossRefGoogle Scholar
  188. O’Grady SP, Dearing MD (2006) Isotopic insight into host–endosymbiont relationships in Liolaemid lizards. Oecologia 150:355–361PubMedCrossRefPubMedCentralGoogle Scholar
  189. Oldewage WH (1992) Occurrence and distribution of parasitic Copepoda (Crustacea) off the southern coast of South Africa. S Afr J Wildl Res 22:33–35Google Scholar
  190. Östlund-Nilsson S, Curtis L, Nilsson GE, Grutter AS (2005) Parasitic isopod Anilocra apogonae, a drag for the cardinal fish Cheilodipterus quinquelineatus. Mar Ecol Prog Ser 287:209–216CrossRefGoogle Scholar
  191. Ota Y, Hoshino O, Hirose M, Tanaka K, Hirose E (2012) Third-stage larva shifts host fish from teleost to elasmobranch in the temporary parasitic isopod, Gnathia trimaculata (Crustacea; Gnathiidae). Mar Biol 159:2333–2347CrossRefGoogle Scholar
  192. Palacios-Fuentes P, Landaeta MF, Muñoz G, Plaza G, Ojeda FP (2012) The effects of a parasitic copepod on the recent larval growth of a fish inhabiting rocky coasts. Parasitol Res 111:1661–1671PubMedCrossRefPubMedCentralGoogle Scholar
  193. Papastamatiou YP, Friedlander AM, Caselle JE, Lowe CG (2010) Long-term movement patterns and trophic ecology of blacktip reef sharks (Carcharhinus melanopterus) at Palmyra Atoll. J Exp Mar Biol Ecol 386:94–102CrossRefGoogle Scholar
  194. Paperna I, Por FD (1977) Preliminary data on the Gnathiidae (Isopoda) of the Northern Red Sea, the Bitter Lakes, and the Mediterranean and the biology of Gnathia piscivora n. sp. Rapports et Proces–Verbaux des Reunions–Commission Internationale pour l’Exploration Scientifique de la Mer Mediterranée (CIESM) 24:195–197Google Scholar
  195. Parker D, Booth AJ (2013) The tongue-replacing isopod Cymothoa borbonica reduces the growth of largespot pompano Trachinotus botla. Mar Biol 160(11):2943–2950CrossRefGoogle Scholar
  196. Paterson RA, Townsend CR, Poulin R, Tompkins DM (2011) Introduced brown trout alternative acanthocephalan infections in native fish. J Anim Ecol 80:990–998PubMedCrossRefPubMedCentralGoogle Scholar
  197. Penfold R, Grutter AS, Kuris AM, McCormick M, Jones CM (2008) Interactions between juvenile marine fish and gnathiid isopods: predation versus micropredation. Mar Ecol Prog Ser 357:111–119CrossRefGoogle Scholar
  198. Petchey OL, Beckerman AP, Riede JO, Warren PH (2008) Size, foraging, and food web structure. Proc Natl Acad Sci 105:4191–4196PubMedCrossRefPubMedCentralGoogle Scholar
  199. Petersen CW (1995) Male mating success and female choice in permanently territorial damselfishes. Bull Mar Sci 57:690–704Google Scholar
  200. Pimm SL (2002) Food webs. The University of Chicago Press, ChicagoGoogle Scholar
  201. Pinnegar J, Campbell N, Polunin NVC (2001) Unusual stable isotope fractionation patterns observed for fish host–parasite trophic relationships. J Fish Biol 59:494–503Google Scholar
  202. Pino-Marambio J, Mordue Luntz AJ, Birkett M, Carvajal J, Asencio G, Mellado A, Quiroz A (2007) Behavioural studies of host, non-host and mate location by the Sea Louse, Caligus rogercresseyi Boxshall & Bravo, 2000 (Copepoda: Caligidae). Aquacult 271:70–76CrossRefGoogle Scholar
  203. Plaisance L, Knowlton N, Paulay G, Meyer C (2009) Reef-associated crustacean fauna: biodiversity estimates using semi-quantitative sampling and DNA barcoding. Coral Reefs 28:977–986CrossRefGoogle Scholar
  204. Poore GCB, Bruce NL (2012) Global diversity of marine isopods (except Asellota and crustacean symbionts). PLoS One 7:e43529PubMedPubMedCentralCrossRefGoogle Scholar
  205. Popp BN, Graham BS, Olson RJ, Hannides CC, Lott MJ, López-Ibarra GA, Galván-Magaña F, Fry B (2007) Insight into the trophic ecology of yellowfin tuna, Thunnus albacares, from compound-specific nitrogen isotope analysis of proteinaceous amino acids. Terr Ecol 1:173–190CrossRefGoogle Scholar
  206. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  207. Poulin R (2007) Are there general laws in parasite ecology? Parasitology 134:763–776PubMedCrossRefPubMedCentralGoogle Scholar
  208. Poulin R, Morand S (2000) The diversity of parasites. Q Rev Biol 75:277–293PubMedCrossRefPubMedCentralGoogle Scholar
  209. Poulin R, Curtis MA, Rau ME (1990) Responses of the fish ectoparasite Salmincola edwardsii (Copepoda) to stimulation, and their implication for host-finding. Parasitology 100:417–421PubMedCrossRefPubMedCentralGoogle Scholar
  210. Poulin R, Blasco-Costa I, Randhawa HS (2016) Integrating parasitology and marine ecology: seven challenges towards greater synergy. J Sea Res 113:3–10CrossRefGoogle Scholar
  211. Power M, Klein GM (2004) Fish host–cestode parasite stable isotope enrichment patterns in marine, estuarine and freshwater fishes from Northern Canada. Isotope Environ Health Stud 40:257–266CrossRefGoogle Scholar
  212. Quattrini AM, Demopoulos AWJ (2016) Ectoparasitism on deep-sea fishes in the western North Atlantic: in situ observations from ROV surveys. Int J Parasitol Parasites Wildl 5:217–228PubMedPubMedCentralCrossRefGoogle Scholar
  213. Qviller L, Risnes-Olsen N, Bærum KM, Meisingset EL, Loe LE, Ytrehus B, Viljugrein H, Mysterud A (2013) Landscape level variation in tick abundance relative to seasonal migration in red deer. PLoS One 8:e71299PubMedPubMedCentralCrossRefGoogle Scholar
  214. Raffel TR, Martin LB, Rohr JR (2008) Parasites as predators: unifying natural enemy ecology. Trends Ecol Evol 23:610–618PubMedCrossRefPubMedCentralGoogle Scholar
  215. Rameshkumar G, Ravichandran S, Sivasubramanian K (2013) Secondary microbial infection in carangid fishes due to cymothoid isopod parasites. Proc Natl Acad Sci 36:591–597Google Scholar
  216. Rines KM (2015) New Hampshire Moose Assessment 2015. New Hampshire Fish and Game Department ReportGoogle Scholar
  217. Robinson MP (2005) Role of the isopod Anilocra partiti in the health, behavior and mating success of the bicolor damselfish, Stegastes bipartitus. Dissertation, University of MiamiGoogle Scholar
  218. Roche DG, Binning SA, Strong LE, Davies JN, Jennions MD (2013a) Increased behavioural lateralization in parasitized coral reef fish. Behav Ecol Sociobiol 67:1339–1344CrossRefGoogle Scholar
  219. Roche DG, Strong LE, Binning SA (2013b) Prevalence of the parasitic cymothoid isopod Anilocra nemipteri on its fish host at Lizard Island, Great Barrier Reef. Aust J Zool 60:330–333CrossRefGoogle Scholar
  220. Rohde K (1976) Species diversity of parasites on the Great Barrier Reef. Parasitol Res 50:93–94Google Scholar
  221. Rohr JR, Swan A, Raffel TR, Hudson PJ (2009) Parasites, info-disruption, and the ecology of fear. Oecologia 159:447–454PubMedCrossRefPubMedCentralGoogle Scholar
  222. Saarinen M, Taskinen J (2005) Long-lasting effect of stress on susceptibility of a freshwater clam to copepod parasitism. Parasitology 130:523–529PubMedCrossRefPubMedCentralGoogle Scholar
  223. Sala-Bonzano M, Van Oosterhou C, Mariani S (2012) Impact of a mouth parasite in a marine fish differs between geographical areas. Biol J Linnean Soc 105:842–852CrossRefGoogle Scholar
  224. Santos TRN, Sikkel PC (2017) Habitat associations of fish-parasitic gnathiid isopods in a shallow reef system in the central Philippines. Mar Biodivers 49:83–96.  https://doi.org/10.1007/s12526-017-0756-6 CrossRefGoogle Scholar
  225. Sasal P, Mouillot D, Fichez R, Chifflet S, Kulbicki M (2007) The use of fish parasites as biological indicators of anthropogenic influences in coral-reef lagoons: a case study of Apogonidae parasites in New-Caledonia. Marine Poll Bull 54:1697–1706CrossRefGoogle Scholar
  226. Sato T, Egusa T, Fukushima K, Oda T, Ohte N, Tokuchi N, Watanabe K, Kanaiwa M, Murakami I, Lafferty KD (2012) Nematomorph parasites indirectly alter the food web and ecosystem function of streams through behavioral manipulation of their cricket hosts. Ecol Lett 15:786–793PubMedCrossRefPubMedCentralGoogle Scholar
  227. Schultz ET, Topper M, Heins DC (2006) Decreased reproductive investment of female threespine stickleback Gasterosteus aculeatus infected with the cestode Schistocephalus solidus: parasite adaptation, host adaptation, or side effect? Oikos 114:303–310CrossRefGoogle Scholar
  228. Sellers JC, Holstein DJ, Botha T, Sikkel PC (2019) Lethal and sublethal impacts of a micropredator on post-settlement Caribbean reef fishes. Oecologia 189(2):293–305.  https://doi.org/10.1007/s00442-018-4262-8 CrossRefPubMedPubMedCentralGoogle Scholar
  229. Shantz AA, Ladd MC, Shrack E, Burkpile DE (2015) Fish-derived nutrient hotspots shape coral reef benthic communities. Ecol Appl 8:2142–2152CrossRefGoogle Scholar
  230. Shaw AK, Binning SA (2016) Migratory recovery from infection as a selective pressure for the evolution of migration. Am Nat 187:491–501PubMedCrossRefPubMedCentralGoogle Scholar
  231. Sikkel PC (1986) Intraspecific cleaning by juvenile salema, Xenestius californiensis (Pisces: Haemulidae). Calif Fish Game 72:170–172Google Scholar
  232. Sikkel PC, Kramer DL (2006) Territory revisits reduce intrusion during spawning trips by female yellowtail damselfish. Anim Behav 71:71–78CrossRefGoogle Scholar
  233. Sikkel PC, Smit NJ (2018) Intraspecific cleaning by juvenile Cape white seabream Diplodus capensis (Sparidae) off eastern South Africa. Afr J Mar Sci 40:97–99CrossRefGoogle Scholar
  234. Sikkel PC, Fuller CA, Hunte W (2000) Habitat/sex differences in time at cleaning stations and ectoparasite loads in a Caribbean reef fish. Mar Ecol Prog Ser 193:191–199CrossRefGoogle Scholar
  235. Sikkel PC, Cheney KL, Côté IM (2004) In situ evidence for ectoparasites as a proximate cause of cleaning interactions in marine reef fish. Anim Behav 68:241–247CrossRefGoogle Scholar
  236. Sikkel PC, Herzlieb SE, Kramer DL (2005) Compensatory cleaner-seeking behavior following spawning in female yellowtail damselfish. Mar Ecol Prog Ser 296:1–11CrossRefGoogle Scholar
  237. Sikkel PC, Schaumburg C, Mathenia J (2006) Diel infestation patterns of gnathiid isopod larvae on Caribbean reef fishes. Coral Reefs 25:683–689CrossRefGoogle Scholar
  238. Sikkel PC, Ziemba RE, Sears W, Wheeler J (2009) Ontogenetic shifts in timing of host infestation by parasitic gnathiid isopod larvae on Caribbean coral reefs. Coral Reefs 28:489–495CrossRefGoogle Scholar
  239. Sikkel PC, Sears WT, Weldon B, Tuttle BC (2011) An experimental field test of host-finding mechanisms in a Caribbean gnathiid isopod and a new technique for sampling gnathiids on coral reefs. Mar Biol 158:1075–1083CrossRefGoogle Scholar
  240. Sikkel PC, Tuttle LJ, Cure K, Coile AM, Hixon MA (2014) Low susceptibility of invasive red lionfish (Pterois volitans) to a generalist ectoparasite. PLoS One 9:5CrossRefGoogle Scholar
  241. Sikkel PC, Welicky RL, Artim JM, McCammon AM, Sellers JC, Coile AM, Jenkins WG (2017) Nocturnal migration reduces exposure to micropredation in a coral reef fish. Bull Mar Sci 2:475–489CrossRefGoogle Scholar
  242. Smit NJ, Davies AJ (1999) New host records for Haemogregarina bigemina Laveran & Mesnil, 1901 (Apicomplexa; Adeleina) from South Africa. J Mar Biol Assoc UK 79:933–935CrossRefGoogle Scholar
  243. Smit NJ, Davies AJ (2004) The curious life-style of the parasitic stages of gnathiid isopods. Adv Parasitol 58:289–391PubMedCrossRefPubMedCentralGoogle Scholar
  244. Smit NJ, Basson L, Van As JG (2003) Life cycle of the temporary fish parasite, Gnathia africana (Crustacea: Isopoda: Gnathiidae). Folia Parasitol 50:135–142CrossRefGoogle Scholar
  245. Smit NJ, Grutter AS, Adlard RD, Davies AJ (2006) Hematozoa of teleosts from Lizard Island, Australia with some comments on their possible mode of transmission and the description of a new hemogregarine species. J Parasitol 92:778–788PubMedCrossRefPubMedCentralGoogle Scholar
  246. Smit NJ, Bruce NL, Hadfield KA (2014) Global diversity of fish parasitic isopod crustaceans of the family Cymothoidae. Int J Parasitol Parasites Wildl 3:188–197PubMedPubMedCentralCrossRefGoogle Scholar
  247. Sonnenholzner JI, Lafferty KD, Ladah LB (2011) Food webs and fishing affect parasitism of the sea urchin Eucidaris galapagensis in the Galápagos. Ecology 92:2276–2284PubMedCrossRefPubMedCentralGoogle Scholar
  248. Stapp P, Salkeld DJ (2009) Inferring host–parasite relationships using stable isotopes: implications for disease transmission and host specificity. Ecology 90:3268–3273PubMedCrossRefPubMedCentralGoogle Scholar
  249. Stephenson AB (1976) Gill damage in fish produced by buccal parasites. Rec Auckland Inst Mus 13:167–173Google Scholar
  250. Stepien CA, Brusca RC (1985) Nocturnal attacks on nearshore fishes in southern California by crustacean zooplankton. Mar Biol 25:91–105Google Scholar
  251. Strathmann RR, Hughes TP, Kuris AM, Lindeman KC, Morgan SG, Pandolfi JM, Warner RR (2002) Evolution of local recruitment and its consequences for marine populations. Bull Mar Sci 70(Suppl 1):377–396Google Scholar
  252. Strauss A, White A, Boots M (2012) Invading with biological weapons: the importance of disease-mediated invasions. Funct Ecol 26:1249–1261CrossRefGoogle Scholar
  253. Sukhdeo MV (2010) Food webs for parasitologists: a review. J Parasitol 96:273–284PubMedCrossRefPubMedCentralGoogle Scholar
  254. Sun D, Blomberg SP, Cribb TH, McCormick MI, Grutter AS (2012) The effects of parasites on early life stages of a damselfish. Coral Reefs 31:1065–1075CrossRefGoogle Scholar
  255. Sures B, Siddall R, Taraschewski H (1999) Parasites as accumulation indicators of heavy metal pollution. Parasitol Today 15:16–21PubMedCrossRefPubMedCentralGoogle Scholar
  256. Svavarsson J, Bruce NL (2012) New and little-known gnathiid isopod crustaceans (Cymothoida) from the northern Great Barrier Reef and the Coral Sea. Zootaxa 3380:1–33CrossRefGoogle Scholar
  257. Tanaka K (2003) Population dynamics of the sponge-dwelling gnathiid isopod Elaphognathia cornigera. J Mar Biol Assoc UK 83:95–102CrossRefGoogle Scholar
  258. Tanaka K (2007) Life history of gnathiid isopods–current knowledge and future directions. Plankton Benthos Res 2:1–11CrossRefGoogle Scholar
  259. Tanaka K, Aoki M (2000) Seasonal trait of reproduction in a gnathiid isopod Elaphognathia cornigera (Nunomura, 1992). Zool Sci 17:467–475Google Scholar
  260. Tanaka K, Nishi E (2008) Habitat use by the gnathiid isopod Elaphognathia discolor living in terebellid polychaete tubes. J Mar Biol Assoc UK 88:57–63CrossRefGoogle Scholar
  261. Taskinen J, Saarinen M (1999) Increased parasite abundance associated with reproductive maturity of the clam Anodonta piscinalis. J Parasitol 85:588–591PubMedCrossRefPubMedCentralGoogle Scholar
  262. Terborgh J, Estes JA (2010) Trophic cascades: predators, prey, and the changing dynamics in nature. Island Press, Washington, DCGoogle Scholar
  263. Thieltges DW, Reise K, Prinz K, Jensen KT (2008) Invaders interfere with native parasite–host interactions. Biol Invasions 11:1421–1429CrossRefGoogle Scholar
  264. Thresher RE (1984) Reproduction in reef fishes. T.F.H. Publications, Neptune CityGoogle Scholar
  265. Torchin ME, Lafferty KD, Kuris AM (2001) Release from parasites as natural enemies: increased performance of a globally introduced marine crab. Biol Invasions 3:333–345CrossRefGoogle Scholar
  266. Triki Z, Grutter AS, Bshary R, Ros AF (2016) Effects of short-term exposure to ectoparasites on fish cortisol and hematocrit levels. Mar Biol 163(9):187CrossRefGoogle Scholar
  267. Tully O, Nolan DT (2002) A review of the population biology and host–parasite interactions of the sea louse Lepeophtheirus salmonis (Copepoda: Caligidae). Parasitology 124:S165–S182PubMedCrossRefPubMedCentralGoogle Scholar
  268. Tuttle LJ, Sikkel PC, Cure K, Hixon MA (2017) Parasite-mediated enemy release and low biotic resistance may facilitate invasion of Atlantic coral reefs by Pacific red lionfish (Pterois volitans). Biol Invasions 19(2):563–575CrossRefGoogle Scholar
  269. Upton NPD (1987a) Gregarious larval settlement within a restricted intertidal zone and sex differences in subsequent mortality in the polygynous saltmarsh isopod Paragnathia formica (Crustacea: Isopoda). J Mar Biol Assoc UK 67:663–678CrossRefGoogle Scholar
  270. Upton NPD (1987b) Asynchronous male and female life cycles in the sexually dimorphic, harem–forming isopod Paragnathia formica (Crustacea: Isopoda). J Zool 212:677–690CrossRefGoogle Scholar
  271. Vaughan DB, Grutter AS, Costello MJ, Hutson KS (2017) Cleaner fishes and shrimp diversity and a re-evaluation of cleaning symbioses. Fish Fish 18:698–716CrossRefGoogle Scholar
  272. Wägele JW (1987) Description of the postembryonal stages of the Antarctic fish parasite Gnathia calva Vanhoffen (Crustacea: Isopoda) and synonymy with Heterognathia Amar & Roman. Polar Biol 7:77–92CrossRefGoogle Scholar
  273. Wagner GN, Fast MD, Johnson SC (2008) Physiology and immunology of Lepeophtheirus salmonis infections of salmonids. Trends Parasitol 24:76–183CrossRefGoogle Scholar
  274. Welbergen J (2006) Timing of the evening emergence from day roosts of the grey–headed flying fox, Pteropuspolioc ephalus: the effects of predation risk, foraging needs, and social context. Behav Ecol Sociobiol 60:311–322CrossRefGoogle Scholar
  275. Welicky RL, Sikkel PC (2014) Variation in occurrence of the fish–parasitic cymothoid isopod, Anilocra haemuli, infecting French grunt (Haemulon flavolineatum) in the north–eastern Caribbean. Mar Freshw Res 65:1018–1026CrossRefGoogle Scholar
  276. Welicky RL, Sikkel PC (2015) Decreased movement related to parasite infection in a diel migratory coral reef fish. Behav Ecol Sociobiol 69:1437–1446CrossRefGoogle Scholar
  277. Welicky RM, Cheney KL, Coile AM, McCammon A, Sikkel PC (2013) Lunar periodicity of activity of ectoparasitic gnathiid isopods on Caribbean coral reefs. Mar Biol 160:1607–1617CrossRefGoogle Scholar
  278. Welicky RL, Hadfield KA, Sikkel PC, Smit NJ (2017a) Molecular assessment of three species of Anilocra (Isopoda, Cymothoidae) ectoparasites from Caribbean coral reef fishes, with the description of Anilocra brillae sp. n. ZooKeys 663:21–43CrossRefGoogle Scholar
  279. Welicky RL, Demopoulos AWJ, Sikkel PC (2017b) Host-dependent differences in resource use associated with Anilocra spp. parasitism in two coral reef fishes, as revealed by stable carbon and nitrogen isotope analyses. Mar Ecol 38:e12413CrossRefGoogle Scholar
  280. Welicky RL, Ferreira ML, Sikkel PC, Smit NJ (2018a) Diurnal activity patterns of the temporary fish ectoparasite, Gnathia africana Barnard, 1914 (Isopoda, Gnathiidae), from the southern coast of South Africa. J Mar Biol Assoc UK 98:1715–1723CrossRefGoogle Scholar
  281. Welicky RL, Malherbe W, Hadfield KA, Smit NJ (2019) Understanding growth relationships of African cymothoid fish parasitic isopods using specimens from museum and field collections. Int J Parasitol: Parasites Wildl 8:182–187Google Scholar
  282. Welicky RL, Parkyn DC, Sikkel PC (2018b) Host-dependent differences in measures of condition associated with Anilocra spp. parasitism in two coral reef fishes. Environ Biol Fish 101:1223–1234CrossRefGoogle Scholar
  283. Whiteman EA, Côté IM (2002) Cleaning activity of Caribbean cleaning gobies: intra and interspecific comparisons. J Fish Biol 60:1443–1458CrossRefGoogle Scholar
  284. Williams JD, Boyko CB (2012) The global diversity of parasitic isopods associated with crustacean hosts (Isopoda: Bopyroidea and Cryptoniscidea). PLoS One 7(4):1–9CrossRefGoogle Scholar
  285. Williams EH Jr, Bunkley-Williams L (1996) Parasites of off shore, big game sport fishes of Puerto Rico and the Western North Atlantic (Puerto Rico Department of Natural and Environmental Resources: San Juan, Department of Biology, University of Puerto Rico: Mayaguez)Google Scholar
  286. Williams EH Jr, Williams LB, Waldner RE, Kimmel JJ (1982) Predisposition of a pomacentrid fish, Chromis multilineatus (Guichenot) to parasitism by a cymothoid isopod, Anilocra chromis Williams and Williams. J Parasitol 1:942–945CrossRefGoogle Scholar
  287. Williams HH, MacKenzie K (2003) Marine parasites as pollution indicators: an update. Parasitology 126(7):S27–S41PubMedCrossRefGoogle Scholar
  288. Wood CL, Lafferty KD (2015) How have fisheries affected parasite communities? Parasitology 142:134–144PubMedCrossRefGoogle Scholar
  289. Wood CL, Byers JE, Cottingham KL, Altman I, Donahue MJ, Blakeslee AMH (2007) Parasites alter community structure. Proc Natl Acad Sci USA 104:9335–9339PubMedCrossRefGoogle Scholar
  290. Wood CL, Lafferty KD, Micheli F (2010) Fishing out marine parasites? Impacts of fishing on rates of parasitism in the ocean. Ecol Lett 13:761–775PubMedCrossRefGoogle Scholar
  291. Wood CL, Sandin SA, Zgliczynski B, Guerra AS, Micheli F (2014) Fishing drives declines in fish parasite diversity and has variable effects on parasite abundance. Ecology 95:1929–1946PubMedCrossRefGoogle Scholar
  292. Yahel R, Yahel G, Genin A (2005) Near-bottom depletion of zooplankton over coral reefs: I: Diurnal dynamics and size distribution. Coral Reefs 24:75–85CrossRefGoogle Scholar
  293. Rachel L. Welicky, Wynand Malherbe, Kerry A. Hadfield, Nico J. Smit, (2019) Understanding growth relationships of African cymothoid fish parasitic isopods using specimens from museum and field collections. International Journal for Parasitology: Parasites and Wildlife 8:182-187PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paul C. Sikkel
    • 1
    • 2
  • Rachel L. Welicky
    • 1
    • 2
    • 3
  1. 1.Department of Biological Sciences and Environmental Sciences ProgramArkansas State UniversityJonesboroUSA
  2. 2.Water Research Group, Unit for Environmental Sciences and ManagementNorth-West UniversityPotchefstroomSouth Africa
  3. 3.School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleUSA

Personalised recommendations