Towards a Better Life for Diabetic Patients: Developing and Integrating a Non-invasive Self-Management Support Tool Within a Smart Digital Companion

  • Lemai Nguyen
  • Sasan Adibi
  • Nilmini Wickramasinghe
Part of the Healthcare Delivery in the Information Age book series (Healthcare Delivery Inform. Age)


This paper focuses on the design and development of a non-invasive smart and pervasive mobile solution to measure blood glucose without the need for drawing blood or pricking fingers. Specifically, it examines the possibility of sensors using Terahertz (THz) technology to measure blood glucose. This paper reports on a research in progress looking at identifying and then designing superior strategies for measuring blood glucose. It presents the central role that measuring blood glucose plays in diabetes care management. It then highlights the current methods and problems and concerns with finger pricking. From there, the paper proffers a non-invasive solution using THz technology to measure blood glucose and outlines the approach to design and develop such a solution using a decision science methodology. Finally, the paper reports our current vision and progress in developing and integrating the proposed non-invasive solution with a digital companion to provide personalised assistance to the diabetic patient.


Diabetes Non-invasive Self-management Support tool Pervasive mobile solution 


  1. Adibi, S. (2013). Mobile health (mHealth) biomedical imaging paradigm. Paper presented at the 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC’13), Osaka, Japan.Google Scholar
  2. Australian Institute of Health and Welfare. (2007). National indicators for monitoring diabetes: Report of the diabetes indicators review subcommittee of the national diabetes data working. Diabetes series no. 6. Cat. no. CVD 38. Canberra: AIHW. Canberra: Australian Institute of Health and Welfare.Google Scholar
  3. Australian Institute of Health and Welfare. (2008). Diabetes: Australian facts Canberra. Australian Institute of Health and Welfare.Google Scholar
  4. Britt, H., Miller, G. C., Charles, J., Pan, Y., Valenti, L., Henderson, J., Bayram, C., O’Halloran, J., & Knox, S. (2007). General practice activity in Australia 2005–06. Cat. no. GEP 16. Australian Institute of Health and Welfare.Google Scholar
  5. Burge, M. R. (2001). Lack of compliance with home blood glucose monitoring predicts hospitalization in diabetes. Diabetes Care, 24(8), 1502–1503.CrossRefGoogle Scholar
  6. Castilla-Peón, M. F., Ponce-de-León-Rosales, S., & Calzada-León, R. (2015). Knee skin pricking to monitor capillary blood glucose is less painful than finger pricking in children with type 1 diabetes. International Journal of Diabetes in Developing Countries, 35(4), 620–623. Scholar
  7. Cradock, S., & Hawthorn, J. (2002). Pain, distress and blood glucose monitoring. Journal of Diabetes Nursing, 6(6), 188–191. 184p.Google Scholar
  8. Dahiya, S., Voisine, M., & Samat, A. (2012). Gangrene from finger pricking. Endocrine, 42(3), 767–767. Scholar
  9. Diabetes Australia. (2007). Diabetes facts. New South Wales: Diabetes Australia.Google Scholar
  10. Du, Y., Zhang, W., & Wang, M. L. (2016). Sensing of salivary glucose using nano-structured biosensors. Biosensors, 6, 10.CrossRefGoogle Scholar
  11. Farmer, A. J., Wade, A. N., French, D. P., Simon, J., Yudkin, P., Gray, A., Craven, A., Goyder, L., Holman, R. R., Mant, D., Kinmonth, A. L., & Neil, H. A. (2009). Blood glucose self-monitoring in type 2 diabetes: A randomised controlled trial. Health Technology Assessment, 13(5), iii–iiv, ix-xi, 1-50. Scholar
  12. Giannini, O., & Mayr, M. (2004). Finger pricking. The Lancet, 364(9438), 980. Scholar
  13. Guerci, B., Drouin, P., Grangé, V., Bougnères, P., Fontaine, P., Kerlan, V., Passa, P., Thivolet, C., Vialettes, B., & Charbonnel, B. (2003). Self-monitoring of blood glucose significantly improves metabolic control in patients with type 2 diabetes mellitus: The Auto-Surveillance Intervention Active (ASIA) study. Diabetes & Metabolism, 29(6), 587–594.CrossRefGoogle Scholar
  14. Haller, M. J., Stalvey, M. S., & Silverstein, J. H. (2004). Predictors of control of diabetes: Monitoring may be the key. The Journal of Pediatrics, 144(5), 660–661. Scholar
  15. Heinemann, L. (2008). Finger pricking and pain: A never ending story. Journal of Diabetes Science and Technology, 2(5), 919–921.CrossRefGoogle Scholar
  16. Hevner, A., & Chatterjee, S. (2010). Design research in information systems: Theory and practice (1st ed.). New York: Springer.Google Scholar
  17. Hevner, A., March, S., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Quarterly, 28(1), 75–105.CrossRefGoogle Scholar
  18. HT Correspondent. (2015, 02 April). Now, keep a check on your diabetes without a prick. Hindustan Times. Retrieved from URL:
  19. Jackson, J. B., Bowen, J., Walker, G., Labaune, J., Mourou, G., Menu, M., & Fukunaga, K. (2011). A survey of terahertz applications in cultural heritage conservation science. IEEE Transactions on Terahertz Science and Technology, 1(1), 220.CrossRefGoogle Scholar
  20. Kannampilly, J. J. (2013). Continuous glucose monitoring system. In D. A. Muruganathan (Ed.), Medicine update 2013 – contents (Vol. 23). Mumbai: The Association of Physicians of India (API).Google Scholar
  21. Karges, B., Muche, R., Moritz, M., Riegger, I., Debatin, K. M., Heinze, E., Wabitsch, M., & Karges, W. (2008). Low discomfort and pain associated with intensified insulin therapy in children and adolescents. Diabetes Research and Clinical Practice, 80(1), 96–101.CrossRefGoogle Scholar
  22. Karter, A. J., Ackerson, L. M., Darbinian, J. A., D’Agostino, R. B., Jr., Ferrara, A., Liu, J., & Selby, J. V. (2001). Self-monitoring of blood glucose levels and glycemic control: The Northern California Kaiser Permanente Diabetes registry∗. The American Journal of Medicine, 111(1), 1–9. Scholar
  23. Koschinsky, T. (2007). Blood glucose self-monitoring report 2006 reveals deficits in knowledge and action. Diabetes, Stoffwechsel und Herz, 16, 185–192.Google Scholar
  24. Makaram, P., Owens, D., & Aceros, J. (2014). Trends in nanomaterial-based non-invasive diabetes sensing technologies. Diagnostics, 4(2), 27–46. Scholar
  25. Malanda, U. L., Welschen, L. M., Riphagen, I. I., Dekker, J. M., Nijpels, G., & Bot, S. D. (2012). SMBG in patients with type 2 diabetes mellitus who are not using insulin. Cochrane Database of Systematic Reviews, 18(1), CD005060. Scholar
  26. Nakayama, T., Kudo, H., Sakamoto, S., Tanaka, A., & Mano, Y. (2008). Painless self-monitoring of blood glucose at finger sites. Experimental and Clinical Endocrinology & Diabetes, 116(4), 193–197.CrossRefGoogle Scholar
  27. Pacaud, D., Lemay, J. F., Buithieu, M., & Yale, J. F. (1999). Blood volumes and pain following capillary punctures in children and adolescents with diabetes. Diabetes Care, 22(9), 1592–1594.CrossRefGoogle Scholar
  28. Panwar, A. K., Singh, A., Kumar, A., & Kim, H. (2013). Terahertz imaging system for biomedical applications: Current status. International Journal of Engineering & Technology, 13(2), 33–39.Google Scholar
  29. Peffers, K., Tuunanen, T., Rothenberger, M., & Chatterjee, S. (2007). A design science research methodology for information systems research. Journal of Management Information Systems, 24(3), 45–77. Scholar
  30. RACGP and Diabetes Australia. (2014-2015). General practice management of type 2 diabetes. The Royal Australian College of General Practitioners.Google Scholar
  31. Shen, Y. C., Davies, A. G., Linfield, E. H., Taday, P. F., Arnone, D. D., & Elsey, T. S. (2002). Determination of glucose concentration in whole blood using FTIR spectroscopy. Paper presented at the THz-bridge conference, Capri, Italy.Google Scholar
  32. Shlomowitz, A., & Feher, M. D. (2014). Anxiety associated with self monitoring of capillary blood glucose. British Journal of Diabetes and Vascular Disease, 14(2), 60–63.CrossRefGoogle Scholar
  33. So, C.-F., Choi, K.-S., Wong, T. K. S., & Chung, J. W. Y. (2012). Recent advances in noninvasive glucose monitoring. Medical Devices (Auckland, N.Z.), 5, 45–52. Scholar
  34. Timothy, B., Bode, B. W., Christiansen, M. P., Klaff, L. J., & Alva, S. (2015). The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technology & Therapeutics., 17(11), 787–794. Scholar
  35. Tonouchi, M. (2007). Cutting-edge terahertz technology. Nature Photonics, 1(2), 97–105.CrossRefGoogle Scholar
  36. Wainstein, J., Chimin, G., Landau, Z., Boaz, M., Jakubowicz, D., Goddard, G., & Bar-Dayan, Y. (2013). The use of a CoolSense device to lower pain sensation during finger pricking while measuring blood glucose in diabetes patients—A randomized placebo. Diabetes Technology & Therapeutics, 15(8), 688–694.CrossRefGoogle Scholar
  37. World Health Organization. (2016). Global report on diabetes. WHO Library Cataloguing-in-Publication Data. © World Health Organization 2016.Google Scholar
  38. Yang, X., Zhao, X., Yang, K., Liu, Y., Liu, Y., Fu, W., & Luo, Y. (2016). Biomedical applications of terahertz spectroscopy and imaging. Trends in Biotechnology, 34, 810. Scholar
  39. Zhang, J., Hodge, W., Hutnick, C., & Wang, X. (2011). Noninvasive diagnostic devices for diabetes through measuring tear glucose. Journal of Diabetes Science and Technology, 5(1), 166–172.CrossRefGoogle Scholar
  40. Zhang, T. (2008). Terahertz Time-Domain Spectroscopy of Crystalline Glucose and Galactose. Paper presented at the The 2nd International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2008.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Lemai Nguyen
    • 1
  • Sasan Adibi
    • 2
  • Nilmini Wickramasinghe
    • 3
    • 4
  1. 1.Department of Information Systems and Business AnalyticsDeakin UniversityEast KewAustralia
  2. 2.School of Information Technology, Deakin UniversityEast KewAustralia
  3. 3.Epworth HealthCareRichmondAustralia
  4. 4.Swinburne University of TechnologyHawthornAustralia

Personalised recommendations