Advertisement

Selected Implementation Issues in Computation of the Grünwald-Letnikov Fractional-Order Difference by Means of Embedded System

  • Kamil KoziołEmail author
  • Rafał Stanisławski
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 559)

Abstract

This paper presents practical aspects of the implementation of discrete-time fractional-order models in embedded systems, which use single floating-point operations. To improve the numerical performance of the modeling process for fractional-order difference and discrete-time fractional-order systems the ‘error-free transformation’ in the calculation process is proposed. Simulation examples present that the methodology proposed in the paper significantly improves modeling accuracy.

Keywords

Discrete-time fractional-order system Numerical accuracy 

References

  1. 1.
    Barbosa, R.S., Machado, J.A.T.: Implementation of discrete-time fractional-order controllers based on LS approximations. Acta Polytechnica Hungarica 3(4), 5–22 (2006)Google Scholar
  2. 2.
    Dekker, T.J.: A floating-point technique for extending the available precision. Numerische Mathematik 18(3), 224–242 (1971).  https://doi.org/10.1007/BF01397083MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002).  https://doi.org/10.1137/1.9780898718027CrossRefzbMATHGoogle Scholar
  4. 4.
    Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms, vol. 2, 3rd edn. Addison-Wesley, Reading (1998).  https://doi.org/10.1137/1012065CrossRefzbMATHGoogle Scholar
  5. 5.
    Kootsookos, P.J., Williamson, R.C.: FIR approximation of fractional sample delay systems. IEEE Trans. Circ. Syst. II: Analog Digit. Sig. Process. 43(3), 269–271 (1996).  https://doi.org/10.1109/82.486473CrossRefGoogle Scholar
  6. 6.
    Latawiec, K.J., Stanisławski, R., Łukaniszyn, M., Czuczwara, W., Rydel, M.: Fractional-order modeling of electric circuits: modem empiricism vs. classical science. In: Progress in Applied Electrical Engineering (PAEE) (2017).  https://doi.org/10.1109/PAEE.2017.8008998
  7. 7.
    Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM J. Sci. Comput. (SISC) 26(6), 1955–1988 (2005).  https://doi.org/10.1137/030601818MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Rump, S.M.: Error-free transformations and ill-conditioned problems. In: International Workshop on Verified Computations and Related Topics, University of Karlsruhe, Germany, 7–10 March 2009Google Scholar
  9. 9.
    Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation part I: faithful rounding. SIAM J. Sci. Comput. (SISC) 31(1), 189–224 (2008).  https://doi.org/10.1137/050645671CrossRefzbMATHGoogle Scholar
  10. 10.
    Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation part II: sign, K-fold faithful and rounding to nearest. SIAM J. Sci. Comput. (SISC) 31(2), 1269–1302 (2008).  https://doi.org/10.1137/07068816XCrossRefzbMATHGoogle Scholar
  11. 11.
    Stanisławski, R., Hunek, W.P., Latawiec, K.J.: Finite approximations of a discrete-time fractional derivative. In: Proceedings of the 16th International Conference on Methods and Models in Automation and Robotics, MMAR 2011, Miedzyzdroje, Poland, pp. 142–145, August 2011.  https://doi.org/10.1109/MMAR.2011.6031333
  12. 12.
    Stanisławski, R., Latawiec, K.J., Gałek, M., Łukaniszyn, M.: Modeling and identification of fractional-order discrete-time Laguerre-based feedback-nonlinear systems. Lecture Notes in Electrical Engineering, vol. 320, pp. 101–112 (2015).  https://doi.org/10.1007/978-3-319-09900-2_10Google Scholar
  13. 13.
    Stanisławski, R., Rydel, M., Latawiec, K.J.: Modeling of discrete-time fractional-order state space systems using the balanced truncation method. J. Franklin Inst. 354(7), 3008–3020 (2017).  https://doi.org/10.1016/j.jfranklin.2017.02.003MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 945–950 (2000)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Yamanaka, N., Ogita, T., Rump, S.M., Oishi, S.: A parallel algorithm for accurate dot product. Parallel Comput. 34(6–8), 392–410 (2008).  https://doi.org/10.1016/j.parco.2008.02.002MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Departament of Electrial, Control and Computer EngineeringOpole University of TechnologyOpolePoland

Personalised recommendations