Advertisement

Realization of the Fractional Variable-Order Model with Symmetric Property

  • Michal MaciasEmail author
  • Dominik Sierociuk
  • Wiktor Malesza
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 559)

Abstract

The main contribution of the paper is to show a realization of fractional variable-order electrical model and its symmetric property—it is shown on numerical examples that the composition of two variable-order models designed with opposite value of orders gives an original input function. The fractional order impedances were implemented according to constant-phase element method.

Keywords

Analog modelling Variable-order derivatives Symmetric operators 

Notes

Acknowledgment

This work was supported by the Polish National Science Center under Grant No. UMO-2014/15/B/ST7/00480.

References

  1. 1.
    Dzielinski, A., Sarwas, G., Sierociuk, D.: Comparison and validation of integer and fractional order ultracapacitor models. Adv. Differ. Equ. 2011, 11 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Macias, M., Sierociuk, D.: Modeling of electrical drive system with flexible shaft based on fractional calculus. In: 2013 14th International Carpathian Control Conference (ICCC), pp. 222–227, May 2013Google Scholar
  3. 3.
    Macias, M., Sierociuk, D.: An alternative recursive fractional variable-order derivative definition and its analog validation. In: Proceedings of International Conference on Fractional Differentiation and its Applications, Catania, Italy (2014)Google Scholar
  4. 4.
    Macias, M.: The particular types of fractional variable-order symmetric operators. In: Malinowska, A., Mozyrska, D., Lukasz, S. (eds.) Advances in Non-integer Order Calculus And Its Applications. Lecture Notes in Electrical Engineering. Springer (2019, submitted)Google Scholar
  5. 5.
    Malesza, W., Sierociuk, D., Macias, M.: Solution of fractional variable order differential equation, pp. 1537–1542. American Control Conference, Chicago (2015)Google Scholar
  6. 6.
    Neto, J.P., Coelho, R.M., Valério, D., Vinga, S., Sierociuk, D., Malesza, W., Macias, M., Dzieliński, A.: Variable order differential models of bone remodelling. IFAC-PapersOnLine 50(1), 8066–8071 (2017). 20th IFAC World CongressCrossRefGoogle Scholar
  7. 7.
    Ostalczyk, P., Brzezinski, D., Duch, P., Łaski, M., Sankowski, D.: The variable, fractional-order discrete-time PD controller in the IISv1.3 robot arm control. Central Eur. J. Phys. 11(6), 750–759 (2013)Google Scholar
  8. 8.
    Podlubny, I., Petráš, I., Vinagre, B.M., O’Leary, P., Dorčák, Ľ.: Analogue realizations of fractional-order controllers. Nonlinear Dyn. 29(1), 281–296 (2002).  https://doi.org/10.1023/A:1016556604320MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sakrajda, P., Sierociuk, D.: Modeling heat transfer process in grid-holes structure changed in time using fractional variable order calculus. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds.) Theory and Applications of Non-integer Order Systems, pp. 297–306. Springer, Cham (2017)CrossRefGoogle Scholar
  10. 10.
    Sierociuk, D., Dzielinski, A.: New method of fractional order integrator analog modeling for orders 0.5 and 0.25. In: Proceedings of the 16th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, pp. 137 –141 (2011)Google Scholar
  11. 11.
    Sierociuk, D., Macias, M.: Comparison of variable fractional order PID controller for different types of variable order derivatives. In: 2013 14th International Carpathian Control Conference (ICCC), pp. 334–339, May 2013Google Scholar
  12. 12.
    Sierociuk, D., Malesza, W.: Fractional variable order anti-windup control strategy. Bull. Pol. Acad. Sci. Tech. Sci. 66(4), 427–432 (2018)Google Scholar
  13. 13.
    Sierociuk, D., Malesza, W., Macias, M.: Equivalent switching strategy and analog validation of the fractional variable order derivative definition. In: Proceedings of European Control Conference 2013, ECC 2013, Zurich, Switzerland, pp. 3464–3469 (2013)Google Scholar
  14. 14.
    Sierociuk, D., Malesza, W., Macias, M.: On a new definition of fractional variable-order derivative. In: Proceedings of the 14th International Carpathian Control Conference (ICCC), Rytro, Poland, pp. 340–345 (2013)Google Scholar
  15. 15.
    Sierociuk, D., Twardy, M.: Duality of variable fractional order difference operators and its application to identification. Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 809–815 (2014)Google Scholar
  16. 16.
    Sierociuk, D., Malesza, W., Macias, M.: Derivation, interpretation, and analog modelling of fractional variable order derivative definition. Appl. Math. Model. 39(13), 3876–3888 (2015).  https://doi.org/10.1016/j.apm.2014.12.009MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sierociuk, D., Malesza, W., Macias, M.: Numerical schemes for initialized constant and variable fractional-order derivatives: matrix approach and its analog verification. J. Vibr. Control (2015).  https://doi.org/10.1177/1077546314565438CrossRefzbMATHGoogle Scholar
  18. 18.
    Sierociuk, D., Malesza, W., Macias, M.: On the recursive fractional variable-order derivative: equivalent switching strategy, duality, and analog modeling. Circ. Syst. Sig. Process. 34(4), 1077–1113 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sierociuk, D., Malesza, W., Macias, M.: On a new symmetric fractional variable order derivative. In: Domek, S., Dworak, P. (eds.) Theoretical Developments and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol. 357, pp. 29–39. Springer, Cham (2016)CrossRefGoogle Scholar
  20. 20.
    Valsa, J., Vlach, J.: RC models of a constant phase element. Int. J. Circ. Theory Appl. 41(1), 59–67. https://onlinelibrary.wiley.com/doi/abs/10.1002/cta.785

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Control and Industrial ElectronicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations