Advertisement

The Particular Types of Fractional Variable-Order Symmetric Operators

  • Michal MaciasEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 559)

Abstract

The paper presents particular definitions of symmetric fractional variable order derivatives. The \(\mathcal {BE}\) and \(\mathcal {EB}\) types of the fractional variable-order derivatives and their properties have been introduced. Additionally, the switching order schemes equivalent to these types of definitions have been shown. At the end, all theoretical considerations were validated on numerical examples.

Keywords

Fractional calculus Variable order derivative Symmetric operators 

Notes

Acknowledgment

This work was supported by the Polish National Science Center under Grant No. UMO-2014/15/B/ST7/00480.

References

  1. 1.
    Dzielinski, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Sci. Tech. Sci. 58(4), 583–592 (2010)zbMATHGoogle Scholar
  2. 2.
    Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1–4), 57–98 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Macias, M., Sierociuk, D.: Modeling of electrical drive system with flexible shaft based on fractional calculus. In: 2013 14th International Carpathian Control Conference (ICCC), May, pp. 222–227 (2013)Google Scholar
  4. 4.
    Macias, M., Sierociuk, D.: An alternative recursive fractional variable-order derivative definition and its analog validation. In: Proceedings of International Conference on Fractional Differentiation and Its Applications, Catania, Italy (2014)Google Scholar
  5. 5.
    Ramirez, L.E.S., Coimbra, C.F.M.: On the selection and meaning of variableorder operators for dynamic modeling. Int. J. Diff. Equat. 2010, 16 (2010)zbMATHGoogle Scholar
  6. 6.
    Sierociuk, D., Dzielinski, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modeling heat transfer in heterogeneous media using fractional calculus. In: Proceedings of The Fifth Symposium on Fractional Derivatives and Their Applications (FDTA 2011) as a part of the Seventh ASME/IEEE International Conference on Mechatronics and Embedded Systems and Applications (ASME/IEEE MESA 2011). IDETC/CIE 2011 (2011)Google Scholar
  7. 7.
    Sierociuk, D., Dzielinski, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogeneous media using fractional calculus. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 371(1990), 20120146 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Sierociuk, D., Macias, M., Malesza, W.: Analog modeling of fractional switched order derivative using different switching schemes. IEEE J. Emerg. Sel. Top. Circ. Syst. 3(3), 394–403 (2013)CrossRefGoogle Scholar
  9. 9.
    Sierociuk, D., Malesza, W., Macias, M.: Equivalent switching strategy and analog validation of the fractional variable order derivative definition. In: 2013 Proceedings of European Control Conference. ECC 2013, Zurich, Switzerland, pp. 3464–3469 (2013)Google Scholar
  10. 10.
    Sierociuk, D., Malesza, W., Macias, M.: On a new definition of fractional variable-order derivative. In: 2013 Proceedings of the 14th International Carpathian Control Conference (ICCC), Rytro, Poland, pp. 340–345 (2013)Google Scholar
  11. 11.
    Sierociuk, D., Twardy, M.: Duality of variable fractional order difference operators and its application to identification. Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 809–815 (2014)Google Scholar
  12. 12.
    Sierociuk, D.: Fractional Variable Order Derivative Simulink Toolkit (2012). http://www.mathworks.com/matlabcentral/fileexchange/38801-fractional-variable-order-derivative-simulink-toolkit
  13. 13.
    Sierociuk, D., Malesza, W., Macias, M.: Derivation, interpretation, and analog modelling of fractional variable order derivative definition. Appl. Math. Model. 39(13), 3876–3888 (2015).  https://doi.org/10.1016/j.apm.2014.12.009MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sierociuk, D., Malesza, W., Macias, M.: Numerical schemes for initialized constant and variable fractional-order derivatives: matrix approach and its analog verification. J. Vibr. Control (2015).  https://doi.org/10.1177/1077546314565438CrossRefzbMATHGoogle Scholar
  15. 15.
    Sierociuk, D., Malesza, W., Macias, M.: On the recursive fractional variable-order derivative: equivalent switching strategy, duality, and analog modeling. Circ. Syst. Signal Process. 34(4), 1077–1113 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sierociuk, D., Malesza, W., Macias, M.: On a new symmetric fractional variable order derivative. In: Domek, S., Dworak, P. (eds.) Theoretical Developments and Applications of Non-Integer Order Systems. Lecture Notes in Electrical Engineering, vol. 357, pp. 29–39. Springer, Cham (2016)CrossRefGoogle Scholar
  17. 17.
    Sierociuk, D., Skovranek, T., Macias, M., Podlubny, I., Petras, I., Dzielinski, A., Ziubinski, P.: Diffusion process modeling by using fractional-order models. Appl. Math. Comput. 257, 2–11 (2015)Google Scholar
  18. 18.
    Valerio, D., da Costa, J.S.: Variable-order fractional derivatives and their numerical approximations. Signal Process. 91(3), 470–483 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Control and Industrial ElectronicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations