Advertisement

PSO Identification for Discrete Fractional Order Model of Heat Transfer Process

  • Krzysztof Oprzędkiewicz
  • Klaudia DziedzicEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 559)

Abstract

In the paper the parameter identification problem for the discrete, fractional order, transfer function is presented. The considered discrete transfer function contains integer order and non integer order parts. The non integer order part is described by the discrete version of Charef transfer function. Identification has been done by a hybrid PSO-simplex minimization of the MSE cost function. Tests were done with the use of an experimental heat plant. Results of experiments show that the proposed combined method assures the better accuracy in the sense of MSE than the “pure” PSO or “pure” simplex method, but its duration is relatively long.

Keywords

Identification Fractional order systems Fractional order transfer function Charef approximation PSO algorithm 

Notes

Acknowledgements

This paper was sponsored partially by AGH UST grant no 11.11.120.815 and 15.11.120.741.

References

  1. 1.
    Al-Alaoui, M.A.: Al-Alaoui operator and the \(\alpha \)-approximation for discretization of analog systems. Facta Univ. (Nis) Ser.: Elec. Energ. 19(1), 143–146 (2006)Google Scholar
  2. 2.
    Caponetto, R., Dongola, G., Fortuna, L., Petras, I.: Fractional Order Systems. Modeling and Control Applications. World Scientific Series on Nonlinear Science, Series A, vol. 72, World Scientific Publishing (2010)Google Scholar
  3. 3.
    Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B.: Fractional system as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992)CrossRefGoogle Scholar
  4. 4.
    Chen, Y.Q.: Oustaloup Recursive Approximation for Fractional Order Differentiators. MathWorks Inc., Matlab Central File Exchange (2003)Google Scholar
  5. 5.
    Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Berlin (2008)zbMATHGoogle Scholar
  6. 6.
    Das, S., Pan, I.: Fractional Order Signal Processing. SpringerBriefs in Applied Sciences and Technology (2012).  https://doi.org/10.1007/978-3-642-23117-9-2
  7. 7.
    Das, S., Pan, I.: Intelligent Fractional Order Systems and Control. An Introduction. Springer, Berlin (2013)zbMATHGoogle Scholar
  8. 8.
    Dlugosz, M., Skruch, P.: The application of fractional-order models for thermal process modelling inside buildings. J. Build. Phys. 13, 1–13 (2015)Google Scholar
  9. 9.
    Douambi, A., Charef, A., Besancon, A.: Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function. Int. J. Appl. Math. Comput. Sci. 17(4), 455–462 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dzielinski, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Sci.: Tech. Sci. 58(4), 583–592 (2010)zbMATHGoogle Scholar
  11. 11.
    Kaczorek, T.: Practical stability of positive fractional discrete-time systems. Bull. Pol. Acad. Sci.: Tech. Sci. 56(4), 313–317 (2008)Google Scholar
  12. 12.
    Kaczorek, T.: Selected Problems in Fractional Systems Theory. Springer, Berlin (2011)CrossRefGoogle Scholar
  13. 13.
    Kaczorek, T.: Comparison of approximation methods of positive stable continuous-time linear systems by positive stable discrete-time systems. Arch. Electr. Eng. 62(2), 345–355 (2013)CrossRefGoogle Scholar
  14. 14.
    Kaczorek, T., Rogowski, K.: Fractional linear systems and electrical circuits. Bialystok University of Technology, Bialystok (2014)Google Scholar
  15. 15.
    Kennedy, J., Eberhardt, R.: Particle swarm optimization. In: 1995 IEEE, pp. 1942–1948 (1995)Google Scholar
  16. 16.
    Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning, pp. 760–766. Springer (2010)Google Scholar
  17. 17.
    Majka, Ł.: Applying a fractional coil model for power system ferroresonance analysis. Bull. Pol. Acad. Sci. Tech. Sci. 66(4), 467–474 (2018)Google Scholar
  18. 18.
    Merrikh-Bayat, F.: Rules for selecting the parameters of Oustaloup recursive approximation for the simulation of linear feedback systems containing \(PID_{\mu }\) controller. Commun. Nonlinear Sci. Numer. Simulat. 17, 1852–1861 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mitkowski, W.: Approximation of fractional diffusion-wave equation. Acta Mech. Autom. 5(2), 65–68 (2011)MathSciNetGoogle Scholar
  20. 20.
    Mitkowski, W., Obraczka, A.: Simple identification of fractional differential equation. Solid State Phenom. 180, 331–338 (2012)CrossRefGoogle Scholar
  21. 21.
    Mitkowski, W., Skruch, P.: Fractional-order models of the supercapacitors in the form of RC ladder networks. Bull. Pol. Acad. Sci. Tech. Sci. 61(3), 581–587 (2013)zbMATHGoogle Scholar
  22. 22.
    Obraczka, A., Mitkowski, W.: The comparison of parameter identification methods for fractional partial differential equation. Solid State Phenom. 210, 265–270 (2014)CrossRefGoogle Scholar
  23. 23.
    Oprzedkiewicz, K., Mitkowski, W., Gawin, E.: Parameter identification for non integer order, state space models of heat plant. In: 21th International Conference on Methods and Models in Automation and Robotics (MMAR), 29 August–01 September 2016, Miedzyzdroje, Poland, pp. 184–188 (2016). ISBN 978-1-5090-1866-6. ISBN 978-837518-791-5Google Scholar
  24. 24.
    Oprzedkiewicz, K., Kolacz, T.: A non integer order model of frequency speed control in AC motor. In: Szewczyk, R., Zielinski, C. (eds.) Advances in Intelligent Systems and Computing, vol. 440, pp. 287–298. Springer, Switzerland (2016)Google Scholar
  25. 25.
    Oprzedkiewicz, K.: Discrete transfer function models for non integer order inertial system. In: Szewczyk, R., Zielinski, C. (eds.) Advances in Intelligent Systems and Computing, vol. 440, pp. 287–298. Springer, Switzerland (2018)Google Scholar
  26. 26.
    Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. I 47(1), 25–39 (2000)CrossRefGoogle Scholar
  27. 27.
    Sowa, M.: DAQ-based measurements for ferromagnetic coil modeling using fractional derivatives. In: 2018 International Interdisciplinary Ph.D. Workshop (IIPhDW), pp. 91–95 (2018)Google Scholar
  28. 28.
    Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 231–248 (2000)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Automatics and RoboticsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations