Advertisement

Aspects of the Finite Step Observability of Fractional Order Discrete-Time Polynomial Systems

  • Ewa PawluszewiczEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 559)

Abstract

Discrete-time polynomial control systems described by the Grünwald-Letnikov h-type difference operator are considered. For this class of systems the observability problem is studied. Since the crucial idea of systems’ observability is related to choosing inputs based only on output measurements, different aspects to this problem are discussed.

Keywords

Discrete-time system Polynomial system Grünwald–Letnikov–type difference operator Fractional order Observability 

Notes

Acknowledgment

The work has been supported by grant No. S/WM/1/2016 of Bialystok University of Technology, financed by Polish Ministry of Science and Higher Education.

References

  1. 1.
    Ambroziak, L., Lewon, D., Pawluszewicz, E.: The use of fractional order operators in modeling of RC-electrical systems. Control Cybern. 45(3), 275–288 (2016)zbMATHGoogle Scholar
  2. 2.
    Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäser, Boston (2001)CrossRefGoogle Scholar
  3. 3.
    Busłowicz, M., Nartowicz, T.: Design of fractional order controller for a class of plants with delay. Meas. Autom. Robot. 2, 398–405 (2009)Google Scholar
  4. 4.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  5. 5.
    Craig, J.J.: Introduction to Robotis: Mechanics and Control. Pearson Education, Inc., Upper Saddle River (2005)Google Scholar
  6. 6.
    Das, S.: Functional Fractional Calculus for System Identyfication and Controls. Springer, Heidelberg (2008)Google Scholar
  7. 7.
    Djennoune, S., Bettayeb, M., Al-Saggaf, U.M.: Synchronization of fractional-order discrete-time chaotic systems by exact delayed state reconstructor: application to secure communication. Int. J. Appl. Math. Comput. Sci. 29(1), 179–194 (2019)CrossRefGoogle Scholar
  8. 8.
    Koszewnik, A., Nartowicz, T., Pawluszewicz, E.: Fractional order controller to control pump in FESTO MPS PA compact workstation. In: Proceedings of the International Carpathian Control Conference, pp. 364–367 (2016)Google Scholar
  9. 9.
    Lorenzo, C.F., Hartley, T.T.: On self-consistent operators with application to operators of fractional order. In: Proceedings of the ASME: International Design Engineering technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2009, San Diego, California, USA (2009)Google Scholar
  10. 10.
    Mozyrska, D., Bartosiewicz, Z.: On observability concepts for nonlinear discrete-time fractional order control systems. In: Baleanu, D., Guvenc, Z. (eds.) New Trends in Nanotechnology and Fractional Order Calculus Applications, pp. 305–312. Springer, Dordrecht (2010)CrossRefGoogle Scholar
  11. 11.
    Mozyrska, D., Pawluszewicz, E.: Delta and Nabla monomials and generalized polynomial series on time scales. In: Leizarowitz, A., Mordukhovich, B.S., Shafrir, I., Zaslavski, A.J. (eds.) Nonlinear Analysis and Optimization Series. Contemporary Mathematics, vol. 514, pp. 199–211 (2010)Google Scholar
  12. 12.
    Mozyrska, D., Pawluszewicz, E.: Observability of linear \(q\)-difference fractional-order systems with finite initial memory. Pol. Acad. Sci. Tech. Sci. 58(4), 601–605 (2010)zbMATHGoogle Scholar
  13. 13.
    Mozyrska, D., Pawluszewicz, E., Wyrwas, M.: The \(h\)-difference approach to controllability and observability of fractional linear systems. Asian J. Control 17(6), 1–11 (2015).  https://doi.org/10.1002/asjc.1034MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mozyrska, D., Pawluszewicz, E., Wyrwas, M.: Local observability and controllability of nonlinear discrete-time fractional order systems based on their linearisation. Int. J. Syst. Sci. 48(4), 788–794 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nijmeijer, H., van der Schaft, A.J.: Nonlinear Dynamical Control Systems. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  16. 16.
    Oprzedkiewicz, K., Gawin, E.: A non integer order, state space model for one dimensional heat transfer process. Arch. Control Sci. 26(2), 261–275 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Podlubny, I.: Fractional Differential Systems. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  18. 18.
    Sierociuk, D., Dzieliski, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogenous media using fractional calculus. Phylosophical Trans. Roy. Soc. A–Math. Phys. Eng. Sci. 371(1990) (2013). Article ID 20120146MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sontag, E.: On the internal realization of polynomial response map. Ph.D. thesis, University of Florida, USA (1976)Google Scholar
  20. 20.
    Sontag, E.: On the observability of polynomial systems, I: finite-time problems. SIAM J. Control Optim. 17(1), 139–151 (1979)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sontag, E.: Mathematical Control Theory. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Stanislawski, R., Latawiec, K.: Normalized finite fractional differences: computational and accuracy breakthroughs. Int. J. Appl. Math. Comput. Sci. 22(4), 907–919 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wu, G.-Ch., Baleanu, D., Zeng, S.-D., Deng, Z.-G.: Discrete fractional diffusion equation. Nonlinear Dyn. (2015).  https://doi.org/10.1007/s11071-014-1867-2MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringBialystok University of TechnologyBialystokPoland

Personalised recommendations