Advertisement

Set-Based Analysis for Biological Modeling

  • Thao DangEmail author
  • Tommaso Dreossi
  • Eric Fanchon
  • Oded Maler
  • Carla Piazza
  • Alexandre Rocca
Chapter
Part of the Computational Biology book series (COBO, volume 30)

Abstract

The understanding of biological systems and processes requires the development of dynamical models characterized by nonlinear laws and often intricate regulation architectures. Differential and difference equations are common formalisms to characterize such systems. Hybrid dynamical systems come in handy when the modeled system combines continuous and discrete evolutions or different evolution modes such as where slow evolution phases are interrupted by fast ones. Biological data with kinetic content are often scarce, thus it can be appropriate to reason in terms of sets of (parametrized) models and sets of trajectories. In doing so, uncertainties and lack of knowledge are explicitly taken into account and more reliable predictions can be made. A crucial problem in Systems Biology is thus to identify regions of parameter space for which model behavior is consistent with experimental observations. In this chapter, we investigate the use of set-based analysis techniques, designed to compute on sets of behaviors, for the validation of biological models under uncertainties and perturbations. In addition, these techniques can be used for the synthesis of model parameter sets, so that the execution of the considered biological model under the influence of the synthesized parameters is guaranteed to satisfy a given constraint or property. The proposed approach is illustrated by several case studies, namely a model of iron homeostasis in mammalian cells and some epidemic models.

References

  1. 1.
    Aubin J-P, Cellina A (1984) Differential inclusions: set-valued maps and viability theory. Springer, HeidelbergzbMATHGoogle Scholar
  2. 2.
    Alur R, Courcoubetis C, Halbwachs N, Henzinger TA, Ho PH, Nicollin X, Olivero A, Sifakis J, Yovine S (1995) The algorithmic analysis of hybrid systems. Theor Comput Sci 138(1):3–34MathSciNetzbMATHGoogle Scholar
  3. 3.
    Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126:183–235MathSciNetzbMATHGoogle Scholar
  4. 4.
    Aerts J-M, Haddad WM, An G, Vodovotz Y (2014) From data patterns to mechanistic models in acute critical illness. J Critical Care 29(4):604–610Google Scholar
  5. 5.
    Asarin E, Maler O, Pnueli A (1995) Reachability analysis of dynamical systems having piecewise-constant derivatives. Theor Comput Sci 138:35–65MathSciNetzbMATHGoogle Scholar
  6. 6.
    Aihara K, Suzuki H (2010) Theory of hybrid dynamical systems and its applications to biological and medical systemsGoogle Scholar
  7. 7.
    Althoff M, Stursberg O, Buss M (2008) Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization. In: 47th IEEE conference on decision and control, 2008. CDC 2008. IEEE, pp 4042–4048Google Scholar
  8. 8.
    Asarin E, Schneider G, Yovine S (2001) On the decidability of the reachability problem for planar differential inclusions. In: Domenica M, Benedetto D, Sangiovanni-Vincentelli A (eds) Hybrid systems: computation and control. Springer, Berlin (2001), pp 89–104Google Scholar
  9. 9.
    Avriel M (2003) Nonlinear programming: analysis and methods. Dover books on computer science series. Dover Publications, New YorkzbMATHGoogle Scholar
  10. 10.
    Anai H, Weispfenning V (2001) Reach set computations using real quantifier elimination. In: HSCCGoogle Scholar
  11. 11.
    Bacaër N (2011) A short history of mathematical population dynamics. Springer, BerlinzbMATHGoogle Scholar
  12. 12.
    Banga JR (2008) Optimization in computational systems biology. BMC Systems Biology 2(1):47MathSciNetGoogle Scholar
  13. 13.
    Batt G, Belta C, Weiss R (2007) Model checking genetic regulatory networks with parameter uncertainty. In: HSCC, vol 7. Springer, Berlin, pp 61–75Google Scholar
  14. 14.
    Batt G, Belta C, Weiss R (2008) Temporal logic analysis of gene networks under parameter uncertainty. IEEE Trans Autom Control 53(Special Issue):215–229MathSciNetzbMATHGoogle Scholar
  15. 15.
    Balsa-Canto E, Henriques D, Gábor A, Banga JR (2016) Amigo2, a toolbox for dynamic modeling, optimization and control in systems biology. Bioinformatics 32(21):3357–3359Google Scholar
  16. 16.
    Brim L, Češka M, Šafránek D (2013) Model checking of biological systems. In: Formal Methods for Dynamical Systems. Springer, Berlin, pp 63–112Google Scholar
  17. 17.
    Bernot G, Comet J-P, Snoussi EH (2014) Formal methods applied to gene network modellingGoogle Scholar
  18. 18.
    Brim L, Fabriková J, Drazan S, Safranek D (2011) Reachability in biochemical dynamical systems by quantitative discrete approximation. arXiv:1107.5924
  19. 19.
    Berman S, Halász A, Kumar V (2007) Marco: a reachability algorithm for multi-affine systems with applications to biological systems. In: International workshop on hybrid systems: computation and control. Springer, Berlin, pp 76–89Google Scholar
  20. 20.
    Bartocci Ezio, Lió Pietro (2016) Computational modeling, formal analysis, and tools for systems biology. PLoS Comput Biol 12(1):e1004591Google Scholar
  21. 21.
    Berz M, Makino K (2006) Performance of taylor model methods for validated integration of odes. In: Dongarra J, Madsen K, Waśniewski J (eds) Applied parallel computing. State of the art in scientific computing. Springer, Heidelberg, pp 65–73Google Scholar
  22. 22.
    Branicky MS (1995) Studies in hybrid systems: Modeling, analysis, and control. Technical report, Massachusetts Inst Of Tech Cambridge Lab For Information And Decision SystemsGoogle Scholar
  23. 23.
    Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization: analysis, algorithms, and engineering applications, vol 2. SiamGoogle Scholar
  24. 24.
    Chen X, Ábrahám E, Sankaranarayanan S (2013) Flow*: an analyzer for non-linear hybrid systems. In: Computer aided verification - 25th international conference, CAV 2013, Saint Petersburg, Russia, July 13–19, 2013. Proceedings, pp 258–263Google Scholar
  25. 25.
    Cornish-Bowden A (2013) The origins of enzyme kinetics. FEBS Lett 587(17):2725–2730. A century of Michaelis—Menten kineticsGoogle Scholar
  26. 26.
    Csilléry K, Blum MGB, Gaggiotti OE, François O (2010) Approximate bayesian computation (abc) in practice. Trends Ecol Evol 25(7):410–418Google Scholar
  27. 27.
    Csete M, Doyle J (2014) The mathematician’s control toolbox for management of type 1 diabetes. Interface Focus 4(5):20140042Google Scholar
  28. 28.
    Calzone L, Fages F, Soliman S (2006) Biocham: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14):1805–1807Google Scholar
  29. 29.
    Carrillo M, Góngora PA, Rosenblueth DA (2012) An overview of existing modeling tools making use of model checking in the analysis of biochemical networks. Front Plant Sci 3Google Scholar
  30. 30.
    Cuellar AA, Lloyd CM, Nielsen PE, Bullivant DP, Nickerson DP, Hunter PJ (2003) An overview of cellml 1.1, a biological model description language. SIMULATION: Trans Soc Model Simul Int 79(12):740–747Google Scholar
  31. 31.
    Collombet S, van Oevelen C, Ortega JLS, Abou-Jaoudé W, Di Stefano B, Thomas-Chollier M, Graf T, Thieffry D (2017) Logical modeling of lymphoid and myeloid cell specification and transdifferentiation. Proc Natl Acad Sci 114(23):5792–5799Google Scholar
  32. 32.
    Dreossi T, Dang T (2014) Parameter synthesis for polynomial biological models. In: Proceedings of the 17th international conference on hybrid systems: computation and control. ACM, pp 233–242Google Scholar
  33. 33.
    Dang T, Dreossi T, Piazza C (2014) Parameter synthesis using parallelotopic enclosure and applications to epidemic models. In: International workshop on hybrid systems biology. Springer, Berlin, pp 67–82Google Scholar
  34. 34.
    Dang T, Dreossi T, Piazza C (2015) Parameter synthesis through temporal logic specifications. In: FM 2015: formal methods - 20th international symposium, Oslo, Norway, June 24–26, 2015, Proceedings (2015), pp 213–230Google Scholar
  35. 35.
    Dreossi T, Dang T, Piazza C (2016) Parallelotope bundles for polynomial reachability. In: Proceedings of the 19th international conference on hybrid systems: computation and control. ACM, pp 297–306Google Scholar
  36. 36.
    Drulhe S, Ferrari-Trecate G, De Jong H (2008) The switching threshold reconstruction problem for piecewise-affine models of genetic regulatory networks. IEEE Trans Autom Control 53(Special Issue):153–165MathSciNetzbMATHGoogle Scholar
  37. 37.
    Dang T, Le Guernic C, Maler O (2011) Computing reachable states for nonlinear biological models. Theor Comput Sci 412(21):2095–2107MathSciNetzbMATHGoogle Scholar
  38. 38.
    Donzé A, Maler O (2010) Robust satisfaction of temporal logic over real-valued signals. In: Formal modeling and analysis of timed systems - 8th international conference, FORMATS 2010, Klosterneuburg, Austria, September 8–10, 2010. Proceedings, pp 92–106Google Scholar
  39. 39.
    Dunn S-J, Martello G, Yordanov B, Emmott S, Smith AG (2014) Defining an essential transcription factor program for naïve pluripotency. Science 344(6188):1156–1160Google Scholar
  40. 40.
    Donzé A (2010) Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: CAV, vol 10. Springer, Berlin, pp 167–170Google Scholar
  41. 41.
    Dreossi T (2016) Reachability Computation and Parameter Synthesis for Polynomial Dynamical Systems. PhD thesis, Università degli Studi di UdineGoogle Scholar
  42. 42.
    Dreossi T (2017) Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems. In: Proceedings of the 20th international conference on hybrid systems: computation and control. ACM, pp 29–34Google Scholar
  43. 43.
    Dantzig GB, Thapa MN (2006) Linear programming 2: theory and extensions. Springer Science & Business Media, BerlinGoogle Scholar
  44. 44.
    Fages F, Soliman S (2008) Abstract interpretation and types for systems biology. Theor Comput Sci 403(1):52–70MathSciNetzbMATHGoogle Scholar
  45. 45.
    Gerstein MB, Bruce C, Rozowsky JS, Zheng D, Jiang D, Korbel JO, Emanuelsson O, Zhang ZD, Weissman S, Snyder M (2007) What is a gene, post-encode? History and updated definition. Genome Res 17(6):669–681Google Scholar
  46. 46.
    Goebel R, Sanfelice RG, Teel AR (2009) Hybrid dynamical systems. IEEE Control Syst 29(2):28–93MathSciNetzbMATHGoogle Scholar
  47. 47.
    Hasenauer J, Waldherr S, Wagner K, Allgöwer F (2010) Parameter identification, experimental design and model falsification for biological network models using semidefinite programming. IET Syst Biology 4(2):119–130Google Scholar
  48. 48.
    Henri V (1903) Lois Générales de l’Action des Diastases. Thése de Sciences Naturelles, Paris (éd. Hermann)Google Scholar
  49. 49.
    Henzinger TA, Kopke PW, Puri Aj, Varaiya P (1995) What’s decidable about hybrid automata? J Comput Syst Sci 57:94–124MathSciNetzbMATHGoogle Scholar
  50. 50.
    Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr J-H, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novère N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The systems biology markup language (sbml): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531Google Scholar
  51. 51.
    Hussain F, Jha SK, Jha S, Langmead CJ (2014) Parameter discovery in stochastic biological models using simulated annealing and statistical model checking. Int J Bioinform Res Appl 2 10(4–5):519–539Google Scholar
  52. 52.
    Izhikevich EM (2010) Hybrid spiking models. Philos Trans R Soc Lond A: Math, Phys Eng Sci 368(1930):5061–5070Google Scholar
  53. 53.
    Karmarkar N (1984) A new polynomial-time algorithm for linear programming. In: STOC. ACM, pp 302–311Google Scholar
  54. 54.
    Koutroumpas K, Cinquemani E, Kouretas P, Lygeros J (2008) Parameter identification for stochastic hybrid systems using randomized optimization: a case study on subtilin production by bacillus subtilis. Nonlinear Anal: Hybrid Syst 2(3):786–802MathSciNetzbMATHGoogle Scholar
  55. 55.
    Kong S, Gao S, Chen W, Clarke E (2015) dreach: \(\delta \)-reachability analysis for hybrid systems. In: Baier C, Tinelli C (eds) Tools and algorithms for the construction and analysis of systems. Springer, Heidelberg, pp 200–205Google Scholar
  56. 56.
    Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. In: Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol 115. The Royal Society, pp 700–721Google Scholar
  57. 57.
    Kiehl TR, Mattheyses RM, Simmons MK (2004) Hybrid simulation of cellular behavior. Bioinformatics 20(3):316–322Google Scholar
  58. 58.
    Krivine J-L (1964) Anneaux préordonnés. Journal d’analyse mathématique 12(1):307–326MathSciNetzbMATHGoogle Scholar
  59. 59.
    Lygeros J, Johansson KH, Sastry S, Egerstedt M (1999) On the existence of executions of hybrid automata. In: Proceedings of the 38th IEEE conference on decision and control, 1999, vol 3, IEEE, pp 2249–2254Google Scholar
  60. 60.
    Lafferriere G, Pappas GJ, Yovine S (1998) Reachability computation for linear hybrid systems. In: Proceedings of the 14th IFAC world congress, vol E. Elsevier Science Ltd, Amsterdam, pp 7–12Google Scholar
  61. 61.
    Lincoln P, Tiwari A (2004) Symbolic systems biology: Hybrid modeling and analysis of biological networks. In: International workshop on hybrid systems: computation and control. Springer, Berlin, pp 660–672zbMATHGoogle Scholar
  62. 62.
    Lasserre JB, Toh K-C, Yang S (2015) A bounded degree sos hierarchy for polynomial optimization. EURO J Comput Opt 1–31Google Scholar
  63. 63.
    Loohuis LO, Witzel A, Mishra B (2014) Cancer hybrid automata: Model, beliefs and therapy. Inf Comput 236:68–86Google Scholar
  64. 64.
    MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, Junkins H, McMahon A, Milano A, Morales J, Pendlington ZM, Welter D, Burdett T, Hindorff L, Flicek P, Cunningham F, Parkinson H (2017) The new nhgri-ebi catalog of published genome-wide association studies (gwas catalog). Nucleic Acids Res, 45(D1):D896–D901Google Scholar
  65. 65.
    Magron V, Rocca A, Dang T (2018) Certified roundoff error bounds using bernstein expansions and sparse krivine-stengle representations. arXiv:1802.04385
  66. 66.
    Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TFC, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753Google Scholar
  67. 67.
    Mobilia N (2015) Méthodologie semi-formelle pour l’étude de systèmes biologiques: Application à l’homéostasie du fer. PhD thesis, Université Grenoble AlpesGoogle Scholar
  68. 68.
    Mobilia N, Donzé A, Moulis JM, Fanchon E (2012) A model of the cellular iron homeostasis network using semi-formal methods for parameter space exploration. arXiv:1208.3851
  69. 69.
    Michor F, Iwasa Y, Lengauer C, Nowak MA (2005) Dynamics of colorectal cancer. Semin Cancer Biol 15(6):484–493Google Scholar
  70. 70.
    Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Bio-chem Z 49:333–369Google Scholar
  71. 71.
    Murphy H, Jaafari H, Dobrovolny HM (2016) Differences in predictions of ode models of tumor growth: a cautionary example. BMC Cancer 16(1):163Google Scholar
  72. 72.
    Narkawicz A, Garloff J, Smith A, Muñoz C (2012) Bounding the range of a rational function over a box. Reliab Comput 17:34–39MathSciNetGoogle Scholar
  73. 73.
    Noël V, Grigoriev D, Vakulenko SA, Radulescu O (2012) Hybrid models of the cell cycle molecular machinery. In: Hybrid Systems and Biology (HSB 2012), vol 92, pp 88–105Google Scholar
  74. 74.
    Noël V, Vakulenko S, Radulescu O (2013) A hybrid mammalian cell cycle model. EPTCS 125:68MathSciNetGoogle Scholar
  75. 75.
    Parrilo PA (2003) Semidefinite programming relaxations for semialgebraic problems. Math Program 96(2):293–320MathSciNetzbMATHGoogle Scholar
  76. 76.
    Porreca R, Drulhe S, de Jong H, Ferrari-Trecate G (2008) Structural identification of piecewise-linear models of genetic regulatory networks. J Comput Biol 15(10):1365–1380MathSciNetGoogle Scholar
  77. 77.
    Porkolab L, Khachiyan L (1997) On the complexity of semidefinite programs. J Global Optim 10(4):351–365MathSciNetzbMATHGoogle Scholar
  78. 78.
    Parrilo PA, Sturmfels B (2003) Minimizing polynomial functions. In: Algorithmic and quantitative real algebraic geometry, DIMACS series in discrete mathematics and theoretical computer science, vol 60, pp 83–99Google Scholar
  79. 79.
    Puri A, Varaiya P (1994) Decidability of hybrid systems with rectangular differential inclusions. In: Dill DL (ed) Computer aided verification. Springer, Heidelberg, pp 95–104Google Scholar
  80. 80.
    Rumschinski P, Borchers S, Bosio S, Weismantel R, Findeisen R (2010) Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks. BMC Syst Biol 4(1):69Google Scholar
  81. 81.
    Rocca A, Dang T, Fanchon E, Moulis J-M (2016) Application of the reachability analysis for the iron homeostasis study. In: International workshop on hybrid systems biology. Springer, Berlin, pp 67–84Google Scholar
  82. 82.
    Ramdani N, Meslem N, Candau Y (2008) Reachability of uncertain nonlinear systems using a nonlinear hybridization. Lecture Notes Comput Sci 4981:415–428MathSciNetzbMATHGoogle Scholar
  83. 83.
    Rocca A, Mobilia N, Fanchon E, Ribeiro T, Trilling L, Inoue K (2014) ASP for construction and validation of regulatory biological networks, Chap. 5. Wiley-Blackwell, New York, pp 167–206Google Scholar
  84. 84.
    Rocca A (2018) Formal methods for modelling and validation of biological models. PhD thesis, Université Grenoble AlpesGoogle Scholar
  85. 85.
    Roerink SF, Sasaki N, Lee-Six H, Young MD, Alexandrov Ludmil B, Behjati S, Mitchell TJ, Grossmann S, Lightfoot H, Egan DA, Pronk A, Smakman N, van Gorp J, Anderson E, Gamble SJ, Alder C, van de Wetering M, Campbell PJ, Stratton MR, Clevers H (2018) Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 556:457–462Google Scholar
  86. 86.
    Schilling C, Bogomolov S, Henzinger TA, Podelski A, Ruess J (2016) Adaptive moment closure for parameter inference of biochemical reaction networks. Biosystems 149:15–25Google Scholar
  87. 87.
    Stoma S, Donzé A, Bertaux F, Maler O, Batt G (2013) Stl-based analysis of trail-induced apoptosis challenges the notion of type i/type ii cell line classification. PLoS Comput Biol 9(5):e1003056Google Scholar
  88. 88.
    Sturrock M, Hao W, Schwartzbaum J, Rempala GA (2015) A mathematical model of pre-diagnostic glioma growth. J Theor Biol 380:299–308MathSciNetzbMATHGoogle Scholar
  89. 89.
    Smith AP (2009) Fast construction of constant bound functions for sparse polynomials. J Global Optim 43(2–3):445–458MathSciNetzbMATHGoogle Scholar
  90. 90.
    Streif S, Rumschinski P, Henrion D, Findeisen R (2013) Estimation of consistent parameter sets for continuous-time nonlinear systems using occupation measures and LMI relaxations. In: 2013 IEEE 52nd annual conference on decision and control (CDC). IEEE, pp 6379–6384Google Scholar
  91. 91.
    Singhania R, Sramkoski RM, Jacobberger JW, Tyson JJ (2011) A hybrid model of mammalian cell cycle regulation. PLoS Comput Biol 7(2):e1001077MathSciNetGoogle Scholar
  92. 92.
    Streif S, Savchenko A, Rumschinski P, Borchers S, Findeisen R (2012) Admit: a toolbox for guaranteed model invalidation, estimation and qualitative-quantitative modeling. Bioinformatics 28(9):1290–1291Google Scholar
  93. 93.
    Sommer-Simpson J, Reinitz J, Fridlyand L, Philipson L, Radulescu O (2016) Hybrid reductions of computational models of ion channels coupled to cellular biochemistry. In: International conference on computational methods in systems biology. Springer, Berlin, pp 273–288zbMATHGoogle Scholar
  94. 94.
    Stengle G (1974) A nullstellensatz and a positivstellensatz in semialgebraic geometry. Mathematische Annalen 207(2):87–97MathSciNetzbMATHGoogle Scholar
  95. 95.
    Shia V, Vasudevan R, Bajcsy R, Tedrake R (2014) Convex computation of the reachable set for controlled polynomial hybrid systems. In: 53rd IEEE Conference on decision and control. IEEE, pp 1499–1506Google Scholar
  96. 96.
    Testylier R, Dang T (2012) Analysis of parametric biological models with non-linear dynamics. arXiv:1208.3849
  97. 97.
    Thomas R, Kaufman M (2001) Multistationarity, the basis of cell differentiation and memory. ii. logical analysis of regulatory networks in terms of feedback circuits. Chaos: Interdiscip J Nonlinear Sci 11(1):180–195Google Scholar
  98. 98.
    Transtrum MK, Qiu P (2016) Bridging mechanistic and phenomenological models of complex biological systems. PLoS Comput Biol 12(5)Google Scholar
  99. 99.
    Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH (2009) Approximate bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface 6(31):187–202Google Scholar
  100. 100.
    Van Der Schaft AJ, Schumacher JM (2000) An introduction to hybrid dynamical systems, vol 251. Springer, LondonGoogle Scholar
  101. 101.
    Vanlier J, Tiemann CA, Hilbers PAJ, Van Riel NAW (2013) Parameter uncertainty in biochemical models described by ordinary differential equations. Math Biosci 246(2):305–314MathSciNetzbMATHGoogle Scholar
  102. 102.
    Ye J, Zhang Y, Feng E, Xiu Z, Yin H (2012) Nonlinear hybrid system and parameter identification of microbial fed-batch culture with open loop glycerol input and ph logic control. Appl Math Model 36(1):357–369MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thao Dang
    • 1
    Email author
  • Tommaso Dreossi
    • 2
  • Eric Fanchon
    • 3
  • Oded Maler
    • 1
  • Carla Piazza
    • 4
  • Alexandre Rocca
    • 1
  1. 1.Univ. Grenoble Alpes, CNRSGrenobleFrance
  2. 2.EECS DepartmentUniversity of CaliforniaBerkeleyUSA
  3. 3.Univ. Grenoble AlpesCNRSGrenobleFrance
  4. 4.University of UdineUdineItaly

Personalised recommendations