Advertisement

Opportunities and Challenges in Applying Artificial Intelligence to Bioengineering

  • Fusun Yaman
  • Aaron Adler
  • Jacob BealEmail author
Chapter
Part of the Computational Biology book series (COBO, volume 30)

Abstract

Our capability to engineer biological systems is increasing rapidly in both speed and scale, leading to explosive growth in the complexity of bioengineering projects that can be contemplated. Artificial intelligence techniques have helped to tame such complexity in many other fields, and are beginning to be employed in the same way to the engineering of biological organisms. Using these techniques, computers represent, acquire, and employ domain knowledge to automate “more routine” processes and allow humans to instead focus more on deeper issues of science and engineering. At the same time, applying more sophisticated techniques such as these imposes new demands on biological systems experimentation, particularly with respect to representation and curation of data. This chapter surveys the current state of the art in applying artificial intelligence to bioengineering, as well as discussing opportunities and challenges for the future.

References

  1. 1.
    Bartley B, Beal J, Gruenberg R, McLaughlin J, Myers C, Roehner N, Wipat A (2018) SEP 019–using SBOL to model the design-build-test-learn cycle. https://github.com/SynBioDex/SEPs/blob/master/sep_019.md
  2. 2.
    Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular systems for programmed pattern formation. Nature 434:1130–1134Google Scholar
  3. 3.
    Beal J, Bachrach J (2008) Cells are plausible targets for high-level spatial languages. In: Proceedings of the 2008 second IEEE international conference on self-adaptive and self-organizing systems workshops, IEEE Computer Society, Washington, DC, USA, SASOW ’08, pp 284–291.  https://doi.org/10.1109/SASOW.2008.14
  4. 4.
    Beal J, Yaman F (2012) Toward automated design of cell state detectors. In: 4th international workshop on bio-design automationGoogle Scholar
  5. 5.
    Beal J, Lu T, Weiss R (2011) Automatic compilation from high-level biologically-oriented programming language to genetic regulatory networks. PLoS One 6(8):e22,490.  https://doi.org/10.1371/journal.pone.0022490Google Scholar
  6. 6.
    Beal J, Weiss R, Densmore D, Adler A, Appleton E, Babb J, Bhatia S, Davidsohn N, Haddock T, Loyall J et al (2012) An end-to-end workflow for engineering of biological networks from high-level specifications. ACS Synth Biol 1(8):317–331Google Scholar
  7. 7.
    Beal J, Wagner TE, Kitada T, Azizgolshani O, Parker JM, Densmore D, Weiss R (2014) Model-driven engineering of gene expression from RNA replicons. ACS Synth BiolGoogle Scholar
  8. 8.
    Beal J, Adler A, Yaman F (2016) Managing bioengineering complexity with AI techniques. Biosystems 148:40–46Google Scholar
  9. 9.
    Beal J, DeLateur N, Teague B, Weiss R, Sexton J, Castillo-Hair S, Tabor JJ (2017) Toward quantitative comparison of fluorescent protein expression levels via fluorescent beads. In: International workshop on bio-design automationGoogle Scholar
  10. 10.
    Beal J, Haddock-Angelli T, Baldwin G, Gershater M, Dwijayanti A, Storch M, de Mora K, Lizarazo M, Rettberg R et al (2018) Quantification of bacterial fluorescence using independent calibrants. PLoS one 13(6):e0199,432Google Scholar
  11. 11.
    Berkeley Software 2009 iGem Team (2009) Eugene. http://2009.igem.org/Team:Berkeley_Software/Eugene
  12. 12.
    Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D (2013) Amplifying genetic logic gates. Science 340(6132):599–603Google Scholar
  13. 13.
    Borujeni AE, Channarasappa AS, Salis HM (2013) Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res p gkt1139Google Scholar
  14. 14.
    Bryce D, Goldman R, Kuter U, Beal J, DeHaven M, Geib CS, Plotnick A, Nguyen T, Roehner N (2018) Domain agnostic experimental planning for synthetic biology. In: Hierarchical planning workshopGoogle Scholar
  15. 15.
    Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nature Biotechnol 26:787–93Google Scholar
  16. 16.
    Chen B, Cahoon D, Canton B, Che A (2015) Software for engineering biology in a multi-purpose foundry. In: International workshop on bio-design automationGoogle Scholar
  17. 17.
    Chen J, Goyal G, Plahar HA, Keasling JD, Stawski N, Hillson NJ (2014) DIVA: More science, less DNA construction. In: International workshop on bio-design automationGoogle Scholar
  18. 18.
    Cox RS, Madsen C, McLaughlin J, Nguyen T, Roehner N, Bartley B, Bhatia S, Bissell M, Clancy K, Gorochowski T, et al (2018a) Synthetic biology open language visual (SBOL visual) version 2.0. J Integr Bioinformat 15(1)Google Scholar
  19. 19.
    Cox RS, Madsen C, McLaughlin JA, Nguyen T, Roehner N, Bartley B, Beal J, Bissell M, Choi K, Clancy K, et al (2018b) Synthetic biology open language (SBOL) version 2.2.0. J Integr Bioinformat 15(1)Google Scholar
  20. 20.
    Czar M, Cai Y, Peccoud J (2009) Writing DNA with GenoCAD. Nucleic Acids Res 37(W40–7)Google Scholar
  21. 21.
    Davidsohn N, Beal J, Kiani S, Adler A, Yaman F, Li Y, Xie Z, Weiss R (2014) Accurate predictions of genetic circuit behavior from part characterization and modular composition. ACS Synth BiolGoogle Scholar
  22. 22.
    Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, Alcántara R, Darsow M, Guedj M, Ashburner M (2008) ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res 36:D344–D350 http://nar.oxfordjournals.org/content/36/suppl_1/D344.shortGoogle Scholar
  23. 23.
    Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D’eustachio P, Schaefer C, Luciano J, et al (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28(9):935Google Scholar
  24. 24.
    Densmore D, Hsiau THC, Kittleson JT, DeLoache W, Batten C, Anderson JC (2010) Algorithms for automated DNA assembly. Nucleic Acids Res 38(8):2607–2616. http://www.ncbi.nlm.nih.gov/pubmed/20335162Google Scholar
  25. 25.
    Eilbeck K, Lewis SE, Mungall CJ, Yandell M, Stein L, Durbin R, Ashburner M (2005) The sequence ontology: a tool for the unification of genome annotations. Genome Biol 6(5):R44Google Scholar
  26. 26.
    Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–8Google Scholar
  27. 27.
    Esvelt KM, Carlson JC, Liu DR (2011) A system for the continuous directed evolution of biomolecules. Nature 472(7344):499–503Google Scholar
  28. 28.
    Finney A, Hucka M, Bornstein BJ, Keating SM, Shapiro BM, Matthews J, Kovitz BK, Schilstra MJ, Funahashi A, Doyle J, Kitano H (2006) Software infrastructure for effective communication and reuse of computational models. In: Szallasi Z, Stelling J, Periwal V (eds) System Modeling in cell biology: from concepts to nuts and bolts, MIT PressGoogle Scholar
  29. 29.
    Galdzicki M, Wilson ML, Rodriguez CA, Pocock MR, Oberortner E, Adam L, Adler A, Anderson JC, Beal J, Chandran D, Densmore D, Drory OA, Endy D, Gennari JH, Grunberg R, Ham TS, Hillson NJ, Johnson JD, Kuchinsky A, Lux MW, Madsen C, Misirli G, Myers CJ, Peccoud J, Plahar H, Platt D, Roehner N, Sirin E, Smith TF, Stan GB, Villalobos A, Wipat A, Sauro HM (2012) Synthetic biology open language (SBOL) Version 1.1.0. RFC 87. arXiv:1721.1/66172
  30. 30.
    Galdzicki M, Clancy KP, Oberortner E, Pocock M, Quinn JY, Rodriguez CA, Roehner N, Wilson ML, Adam L, Anderson JC et al (2014) The synthetic biology open language (SBOL) provides a community standard for communicating designs in synthetic biology. Nat Biotechnol 32(6):545–550Google Scholar
  31. 31.
    Gander MW, Vrana JD, Voje WE, Carothers JM, Klavins E (2017) Digital logic circuits in yeast with CRISPR-dCas9 NOR gates. Nat Commun 8(15):459.  https://doi.org/10.1038/ncomms15459Google Scholar
  32. 32.
    Gibson DG, Young L, Chuang RY, Venter JC 3rd, CAH, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345Google Scholar
  33. 33.
    Ham TS, Dmytriv Z, Plahar H, Chen J, Hillson NJ, Keasling JD (2012) Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools. Nucleic Acids Res 40(18):e141–e141Google Scholar
  34. 34.
    Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombinationGoogle Scholar
  35. 35.
    Hillson NJ, Rosengarten R, Keasling JD (2012) j5 DNA assembly design automation software. ACS Synth Biol 1(1)Google Scholar
  36. 36.
    Hoffman RA, Wang L, Bigos M, Nolan JP (2012) NIST/ISAC standardization study: variability in assignment of intensity values to fluorescence standard beads and in cross calibration of standard beads to hard dyed beads. Cytom Part A 81(9):785–796Google Scholar
  37. 37.
    Ison J, Kalaš M, Jonassen I, Bolser D, Uludag M, McWilliam H, Malone J, Lopez R, Pettifer S, Rice P (2013) Edam: an ontology of bioinformatics operations, types of data and identifiers, topics and formats. Bioinformatics 29(10):1325–1332Google Scholar
  38. 38.
    Kanehisa M, Goto S (2000) Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30Google Scholar
  39. 39.
    Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J, Czar MJ, de Mora K, Glieberman AL, Monie DD, Endy D (2009) Measuring the activity of BioBrick promoters using an in vivo reference standard. J Biol Eng 3(4)Google Scholar
  40. 40.
    Kiani S, Beal J, Ebrahimkhani MR, Huh J, Hall RN, Xie Z, Li Y, Weiss R (2014a) CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat Methods 11(7):723–726.  https://doi.org/10.1038/nmeth.2969Google Scholar
  41. 41.
    Kiani S, Beal J, Ebrahimkhani MR, Huh J, Hall RN, Xie Z, Li Y, Weiss R (2014b) CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat MethodsGoogle Scholar
  42. 42.
    King RD, Rowland J, Oliver SG, Pir P, Aubrey W, Liakata M, Markham M, Soldatova LN, Whelan KE, Clare A et al (2009) The robot scientist Adam. Computer 42(8):46–54Google Scholar
  43. 43.
    Klavins E (2018) Aquarium. http://klavinslab.org/aquarium
  44. 44.
    Knight T (2003) Idempotent vector design for standard assembly of BioBricks. Technical Reports, MIT Synthetic Biology Working Group Technical ReportsGoogle Scholar
  45. 45.
    Lakhani KR, Von Hippel E (2003) How open source software works: free user-to-user assistance. Res Policy 32(6):923–943Google Scholar
  46. 46.
    Le Novere N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM et al (2009) The systems biology graphical notation. Nat Biotechnol 27(8):735Google Scholar
  47. 47.
    Lebo T, Sahoo S, McGuinness D, Belhajjame K, Cheney J, Corsar D, Garijo D, Soiland-Reyes S, Zednik S, Zhao J (2013) PROV-O: the PROV ontology. W3C recommendation, 30 April 2013. World Wide Web ConsortiumGoogle Scholar
  48. 48.
    Li Y, Jiang Y, Chen H, Liao W, Li Z, Weiss R, Xie Z (2015) Modular construction of mammalian gene circuits using tale transcriptional repressors. Nat Chem Biol 11(3):207–213Google Scholar
  49. 49.
    Linshiz G, Stawski N, Poust S, Bi C, Keasling JD, Hillson NJ (2012) PaR-PaR laboratory automation platform. ACS Synth Biol 2(5):216–222Google Scholar
  50. 50.
    Lou C, Stanton B, Chen YJ, Munsky B, Voigt CA (2012) Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat Biotechnol 30(11):1137–1142Google Scholar
  51. 51.
    Madsen C, McLaughlin JA, Mısırlı G, Pocock M, Flanagan K, Hallinan J, Wipat A (2016) The SBOL Stack: A Platform for Storing, Publishing, and Sharing Synthetic Biology Designs. ACS Synth Biol 5(6):487–497.  https://doi.org/10.1021/acssynbio.5b00210, http://pubs.acs.org/doi/10.1021/acssynbio.5b00210Google Scholar
  52. 52.
    Marchisio MA, Stelling J (2011) Automatic design of digital synthetic gene circuits. PLoS Comput Biol 7(2):e1001–083.  https://doi.org/10.1371/journal.pcbi.1001083Google Scholar
  53. 53.
    McLaughlin JA, Myers CJ, Zundel Z, Misirli G, Zhang M, Ofiteru ID, Goñi Moreno A, Wipat A (2018) SynBioHub: a standards-enabled design repository for synthetic biology. ACS Synth BiolGoogle Scholar
  54. 54.
    Morrell WC, Birkel GW, Forrer M, Lopez T, Backman TW, Dussault M, Petzold CJ, Baidoo EE, Costello Z, Ando D et al (2017) The experiment data depot: a web-based software tool for biological experimental data storage, sharing, and visualization. ACS Synth Biol 6(12):2248–2259Google Scholar
  55. 55.
    Mutalik VK, Guimaraes JC, Cambray G, Lam C, Christoffersen MJ, Mai QA, Tran AB, Paull M, Keasling JD, Arkin AP et al (2013) Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods 10(4):354–360Google Scholar
  56. 56.
    Nielsen AA, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D, Voigt CA (2016) Genetic circuit design automation. Science 352(6281):aac7341Google Scholar
  57. 57.
    Ostrov N, Landon M, Guell M, Kuznetsov G, Teramoto J, Cervantes N, Zhou M, Singh K, Napolitano MG, Moosburner M et al (2016) Design, synthesis, and testing toward a 57-codon genome. Science 353(6301):819–822Google Scholar
  58. 58.
    Pedersen M, Phillips A (2009) Towards programming languages for genetic engineering of living cells. J Royal Soc Interf Royal Soc 6(4):S437–S450. http://www.ncbi.nlm.nih.gov/pubmed/19369220
  59. 59.
    Quinn JY, Cox RS III, Adler A, Beal J, Bhatia S, Cai Y, Chen J, Clancy K, Galdzicki M, Hillson NJ et al (2015) SBOL visual: a graphical language for genetic designs. PLoS Biol 13(12):e1002,310Google Scholar
  60. 60.
    Richardson SM, Mitchell LA, Stracquadanio G, Yang K, Dymond JS, DiCarlo JE, Lee D, Huang CLV, Chandrasegaran S, Cai Y et al (2017) Design of a synthetic yeast genome. Science 355(6329):1040–1044Google Scholar
  61. 61.
    Rocklin G, Chidyausiku T, Goreshnik I, Ford A, Houliston S, Lemak A, Carter L, Ravichandran R, Mulligan V, Chevalier A, Arrowsmith C, Baker D (2017) Global analysis of protein folding using massively parallel design, synthesis, and testing. Science 357:168–175.  https://doi.org/10.1126/science.aan0693MathSciNetzbMATHGoogle Scholar
  62. 62.
    Roehner N, Beal J, Clancy K, Bartley B, Misirli G, Grünberg R, Oberortner E, Pocock M, Bissell M, Madsen C et al (2016) Sharing structure and function in biological design with SBOL 2.0. ACS Synth Biol 5(6):498–506Google Scholar
  63. 63.
    Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93Google Scholar
  64. 64.
    Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27(10):946–950Google Scholar
  65. 65.
    Simons KT, Strauss C, Baker D (2001) Prospects for ab initio protein structural genomics. J Molecul Biol 306(5):1191–1199Google Scholar
  66. 66.
    Smanski MJ, Bhatia S, Zhao D, Park Y, Woodruff LB, Giannoukos G, Ciulla D, Busby M, Calderon J, Nicol R et al (2014) Functional optimization of gene clusters by combinatorial design and assembly. Nat Biotechnol 32(12):1241Google Scholar
  67. 67.
    Solé R, Amor DR, Duran-Nebreda S, Conde-Pueyo N, Carbonell-Ballestero M, Montañez R (2016) Synthetic collective intelligence. Biosystems 148:47–61Google Scholar
  68. 68.
    Stanton B, Nielsen A, Tamsir A, Clancy K, Peterson T, Voigt C (2014) Genomic mining of prokaryotic repressors for orthogonal logic gates. Nat Chem Biol 10(2):99–105.  https://doi.org/10.1038/nchembio.1411Google Scholar
  69. 69.
    Synthace (2018) Antha programming language. https://www.antha-lang.org
  70. 70.
    Transcriptic (2018) Autoprotocol. http://autoprotocol.org/
  71. 71.
    UniProt Consortium (2014) UniProt: a hub for protein information. Nucleic Acids Res 43(D1):D204–D212Google Scholar
  72. 72.
    Vasilev V, Liu C, Haddock T, Bhatia S, Adler A, Yaman F, Beal J, Babb J, Weiss R, Densmore D (2011) A software stack for specification and robotic execution of protocols for synthetic biological engineering. In: 3rd international workshop on bio-design automationGoogle Scholar
  73. 73.
    Waltemath D, Adams R, Bergmann FT, Hucka M, Kolpakov F, Miller AK, Moraru II, Nickerson D, Sahle S, Snoep JL et al (2011) Reproducible computational biology experiments with SED-ML-the simulation experiment description markup language. BMC Syst Biol 5(1):198Google Scholar
  74. 74.
    Wang C, Bradley P, Baker D (2007) Protein-protein docking with backbone flexibility. J Mol Biol 373(2):503–519Google Scholar
  75. 75.
    Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6(2):e16,765Google Scholar
  76. 76.
    Weinberg BH, Pham NTH, Caraballo LD, Lozanoski T, Engel A, Bhatia S, Wong WW (2017) Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nat Biotechnol 35(5):453–462.  https://doi.org/10.1038/nbt.3805Google Scholar
  77. 77.
    West J, Gallagher S (2006) Challenges of open innovation: the paradox of firm investment in open-source software. R&d Manag 36(3):319–331Google Scholar
  78. 78.
    Xiang Z, Mungall C, Ruttenberg A, He Y (2011) Ontobee: A linked data server and browser for ontology terms. In: ICBOGoogle Scholar
  79. 79.
    Xie Z, Wroblewska L, Prochazka L, Weiss R, Benenson Y (2011) Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333(6047):1307–1311.  https://doi.org/10.1126/science.1205527Google Scholar
  80. 80.
    Yaman F, Bhatia S, Adler A, Densmore D, Beal J (2012) Automated selection of synthetic biology parts for genetic regulatory networks. ACS Synth Biol 1(8):332–344.  https://doi.org/10.1021/sb300032yGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Raytheon BBN TechnologiesCambridgeUSA

Personalised recommendations