Towards the Integration of Metabolic Network Modelling and Machine Learning for the Routine Analysis of High-Throughput Patient Data

  • Maria Pires Pacheco
  • Tamara Bintener
  • Thomas SauterEmail author
Part of the Computational Biology book series (COBO, volume 30)


The decreasing cost of high-throughput technologies allows to consider their use in healthcare and medicine. To prepare for this upcoming revolution, the community is assembling large disease-dedicated datasets such as TCGA or METABRIC. These datasets will serve as references to compare new patient samples to in order to assign them to a predefined category (i.e. ‘patients associated with poor prognosis’). Some problems affecting the downstream analysis remain to be solved, the bottleneck is no longer data generation itself but the integration of the existing datasets with the present knowledge. Constraint-based modelling, that only requires the setting of a few parameters, became popular for the integration of high-throughput data in a metabolic context. Notably, context-specific building algorithms that extract a subnetwork from a reference network are largely used to study metabolic changes in various diseases. Reference networks are composed of canonical pathways while extracted subnetworks include only active pathways in the context of interest based on high-throughput data. Even though these algorithms can be part of automated pipelines, to be applied by clinicians, the model-building pipelines must be coupled to a standardized semi-automated analysis workflow based on machine learning approaches to avoid bias and reduce the cost of diagnostics.


  1. 1.
    Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J (2012) Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 8(5):e1002518Google Scholar
  2. 2.
    Angione C, Lió P (2015) Predictive analytics of environmental adaptability in multi-omic network models. Sci Rep 5:15147Google Scholar
  3. 3.
    Asgari Y, Zabihinpour Z, Salehzadeh-Yazdi A, Schreiber F, Masoudi-Nejad A (2015) Alterations in cancer cell metabolism: the Warburg effect and metabolic adaptation. Genomics 105(5):275–281Google Scholar
  4. 4.
    Askari BS, Krajinovic M (2010) Dihydrofolate reductase gene variations in susceptibility to disease and treatment outcomes. Curr Genomics 11(8):578–583Google Scholar
  5. 5.
    Aurich MK, Fleming RM, Thiele I (2017) A systems approach reveals distinct metabolic strategies among the NCI-60 cancer cell lines. PLoS Comput Biol 13(8):e1005698Google Scholar
  6. 6.
    Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(1)Google Scholar
  7. 7.
    Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D et al (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607Google Scholar
  8. 8.
    Basu A, Bodycombe NE, Cheah JH, Price EV, Liu K, Schaefer GI, Ebright RY, Stewart ML, Ito D, Wang S et al (2013) An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154(5):1151–1161Google Scholar
  9. 9.
    Becker SA, Palsson BO (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4(5):e1000082MathSciNetGoogle Scholar
  10. 10.
    Boehm JS, Golub TR (2015) An ecosystem of cancer cell line factories to support a cancer dependency map. Nat Rev Genet 16(7):373Google Scholar
  11. 11.
    Bordbar A, Monk JM, King ZA, Palsson BO (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15(2):107Google Scholar
  12. 12.
    Clarke C, Doolan P, Barron N, Meleady P, O’Sullivan F, Gammell P, Melville M, Leonard M, Clynes M (2011) Large scale microarray profiling and coexpression network analysis of CHO cells identifies transcriptional modules associated with growth and productivity. J Biotechnol 155(3):350–359Google Scholar
  13. 13.
    Conde M, do Rosario P, Sauter T, Pfau T (2016) Constraint based modeling going multicellular. Front Mol Biosci 3:3Google Scholar
  14. 14.
    Consortium GP et al (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073Google Scholar
  15. 15.
    Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346–352Google Scholar
  16. 16.
    Diener C, Resendis-Antonio O (2016) Personalized prediction of proliferation rates and metabolic liabilities in cancer biopsies. Front Physiol 7Google Scholar
  17. 17.
    Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci 104(6):1777–1782Google Scholar
  18. 18.
    Estévez SR, Nikoloski Z (2015) Context-specific metabolic model extraction based on regularized least squares optimization. PloS One 10(7):e0131875Google Scholar
  19. 19.
    Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7(1):501Google Scholar
  20. 20.
    Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A et al (2010) Cosmic: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res 39(suppl\(\_\)1):D945–D950Google Scholar
  21. 21.
    Franke RM, Scherkenbach LA, Sparreboom A (2009) Pharmacogenetics of the organic anion transporting polypeptide 1A2Google Scholar
  22. 22.
    Frejno M, Chiozzi RZ, Wilhelm M, Koch H, Zheng R, Klaeger S, Ruprecht B, Meng C, Kramer K, Jarzab A et al (2017) Pharmacoproteomic characterisation of human colon and rectal cancer. Mol Syst Biol 13(11):951Google Scholar
  23. 23.
    Gibbs RA, Belmont JW, Hardenbol P, Willis TD, Yu F, Yang H, Ch’ang LY, Huang W, Liu B, Shen Y et al (2003) The international HapMap project. Nature 426(6968):789–796Google Scholar
  24. 24.
    Goh WWB, Wang W, Wong L (2017) Why batch effects matter in omics data, and how to avoid them. Trends BiotechnolGoogle Scholar
  25. 25.
    Guinney J, Dienstmann R, Wang X, De Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21(11):1350Google Scholar
  26. 26.
    Halldorsson S, Rohatgi N, Magnusdottir M, Choudhary KS, Gudjonsson T, Knutsen E, Barkovskaya A, Hilmarsdottir B, Perander M, Mælandsmo GM et al (2017) Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition. Cancer Lett 396:117–129Google Scholar
  27. 27.
    Hart T, Brown KR, Sircoulomb F, Rottapel R, Moffat J (2014) Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol Syst Biol 10(7):733Google Scholar
  28. 28.
    Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, Mis M, Zimmermann M, Fradet-Turcotte A, Sun S et al (2015) High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163(6):1515–1526Google Scholar
  29. 29.
    Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH (1997) Integrating genetic approaches into the discovery of anticancer drugs. Science 278(5340):1064–1068Google Scholar
  30. 30.
    Hefzi H, Ang KS, Hanscho M, Bordbar A, Ruckerbauer D, Lakshmanan M, Orellana CA, Baycin-Hizal D, Huang Y, Ley D et al (2016) A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst 3(5):434–443Google Scholar
  31. 31.
    Heinken A, Sahoo S, Fleming RM, Thiele I (2013) Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4(1):28–40Google Scholar
  32. 32.
    Hillje AL, Beckmann E, Pavlou MA, Jaeger C, Pacheco MP, Sauter T, Schwamborn JC, Lewejohann L (2015) The neural stem cell fate determinant TRIM32 regulates complex behavioral traits. Front Cell Neurosci 9:75Google Scholar
  33. 33.
    Ho YC, Pepyne DL (2002) Simple explanation of the no-free-lunch theorem and its implications. J Optim Theory Appl 115(3):549–570MathSciNetzbMATHGoogle Scholar
  34. 34.
    Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert M, Aben N, Gonçalves E, Barthorpe S, Lightfoot H et al (2016) A landscape of pharmacogenomic interactions in cancer. Cell 166(3):740–754Google Scholar
  35. 35.
    James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol 112. Springer, BerlinGoogle Scholar
  36. 36.
    Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2009) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38(suppl\(\_\)1):D355–D360Google Scholar
  37. 37.
    Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang Z, Liu H, Degenhardt J, Mayba O, Gnad F, Liu J et al (2015) A comprehensive transcriptional portrait of human cancer cell lines. Nat Biotechnol 33(3):306–312Google Scholar
  38. 38.
    Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V et al (2010) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39(suppl\(\_\)1):D1035–D1041Google Scholar
  39. 39.
    Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera MDC, Yusa K (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32(3):267Google Scholar
  40. 40.
    Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711Google Scholar
  41. 41.
    Kotsiantis SB, Zaharakis I, Pintelas P (2007) Supervised machine learning: a review of classification techniques. Emerg Artif Intell Appl Comput Eng 160:3–24Google Scholar
  42. 42.
    Kubens BS, Niggemann B, Zänker KS (2001) Prevention of entrance into G2 cell cycle phase by mimosine decreases locomotion of cells from the tumor cell line SW480. Cancer Lett 162:S39–S47Google Scholar
  43. 43.
    Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P (2010) A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 6(1):343Google Scholar
  44. 44.
    Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279(15):1200–1205Google Scholar
  45. 45.
    Lewis NE, Schramm G, Bordbar A, Schellenberger J, Andersen MP, Cheng JK, Patel N, Yee A, Lewis RA, Eils R et al (2010) Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol 28(12):1279Google Scholar
  46. 46.
    Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16(6):321–332Google Scholar
  47. 47.
    Llaverias G, Danilo C, Mercier I, Daumer K, Capozza F, Williams TM, Sotgia F, Lisanti MP, Frank PG (2011) Role of cholesterol in the development and progression of breast cancer. Am J Pathol 178(1):402–412Google Scholar
  48. 48.
    Long MR, Ong WK, Reed JL (2015) Computational methods in metabolic engineering for strain design. Curr Opin Biotechnol 34:135–141Google Scholar
  49. 49.
    López-Agudelo VA, Baena A, Ramirez-Malule H, Ochoa S, Barrera LF, Ríos-Estepa R (2017) Metabolic adaptation of two in silico mutants of mycobacterium tuberculosis during infection. BMC Syst Biol 11(1):107Google Scholar
  50. 50.
    Machado D, Herrgård M (2014) Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol 10(4):e1003580Google Scholar
  51. 51.
    Mahadevan R, Schilling C (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276Google Scholar
  52. 52.
    Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M, Nielsen J (2014) Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun 5:3083Google Scholar
  53. 53.
    McCullagh P (1984) Generalized linear models. Eur J Oper Res 16(3):285–292MathSciNetzbMATHGoogle Scholar
  54. 54.
    Mienda BS, Salihu R, Adamu A, Idris S (2018) Genome-scale metabolic models as platforms for identification of novel genes as antimicrobial drug targets. Futur Microbiol 13(4):455–467Google Scholar
  55. 55.
    Mitchell TM (1997) Machine learning. 1997, vol 45(37). McGraw Hill, Burr Ridge, pp 870–877Google Scholar
  56. 56.
    Nozawa T, Suzuki M, Takahashi K, Yabuuchi H, Maeda T, Tsuji A, Tamai I (2004) Involvement of estrone-3-sulfate transporters in proliferation of hormone-dependent breast cancer cells. J Pharmacol Exp Ther 311(3):1032–1037Google Scholar
  57. 57.
    Nozawa T, Suzuki M, Yabuuchi H, Irokawa M, Tsuji A, Tamai I (2005) Suppression of cell proliferation by inhibition of estrone-3-sulfate transporter in estrogen-dependent breast cancer cells. Pharm Res 22(10):1634–1641Google Scholar
  58. 58.
    Ohler U, Liao GC, Niemann H, Rubin GM (2002) Computational analysis of core promoters in the Drosophila genome. Genome Biol 3(12):research0087–1Google Scholar
  59. 59.
    Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245Google Scholar
  60. 60.
    Pacheco MP, Sauter T (2018) The FASTCORE family: for the fast reconstruction of compact context-specific metabolic networks models. Metabolic network reconstruction and modeling. Springer, Berlin, pp 101–110Google Scholar
  61. 61.
    Pacheco MP, John E, Kaoma T, Heinäniemi M, Nicot N, Vallar L, Bueb JL, Sinkkonen L, Sauter T (2015) Integrated metabolic modelling reveals cell-type specific epigenetic control points of the macrophage metabolic network. BMC Genomics 16(1):809Google Scholar
  62. 62.
    Pacheco MP, Pfau T, Sauter T (2016) Benchmarking procedures for high-throughput context specific reconstruction algorithms. Front Physiol 6(410).
  63. 63.
    Pacheco MP, Bintener T, Ternes D, Kulms D, Haan S, Letellier E, Sauter T (subm) Identifying and targeting cancer-specific metabolism with network-based drug target predictionGoogle Scholar
  64. 64.
    Plaimas K, Mallm JP, Oswald M, Svara F, Sourjik V, Eils R, König R (2008) Machine learning based analyses on metabolic networks supports high-throughput knockout screens. BMC Syst Biol 2(1):67Google Scholar
  65. 65.
    Plaimas K, Eils R, König R (2010) Identifying essential genes in bacterial metabolic networks with machine learning methods. BMC Syst Biol 4(1):56Google Scholar
  66. 66.
    Raman K, Pratapa A, Mohite O, Balachandran S (2018) Computational prediction of synthetic lethals in genome-scale metabolic models using fast-SL. Metabolic network reconstruction and modeling. Springer, Berlin, pp 315–336Google Scholar
  67. 67.
    Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD (2004) Computational prediction of human metabolic pathways from the complete human genome. Genome Biol 6(1):R2Google Scholar
  68. 68.
    Schomburg I, Chang A, Hofmann O, Ebeling C, Ehrentreich F, Schomburg D (2002) BRENDA: a resource for enzyme data and metabolic informationGoogle Scholar
  69. 69.
    Schultz A, Qutub AA (2016) Reconstruction of tissue-specific metabolic networks using CORDA. PLoS Comput Biol 12(3):e1004808Google Scholar
  70. 70.
    zu Schwabedissen HEM, Tirona RG, Yip CS, Ho RH, Kim RB, (2008) Interplay between the nuclear receptor pregnane X receptor and the uptake transporter organic anion transporter polypeptide 1A2 selectively enhances estrogen effects in breast cancer. Cancer Res 68(22):9338–9347Google Scholar
  71. 71.
    Shaked I, Oberhardt MA, Atias N, Sharan R, Ruppin E (2016) Metabolic network prediction of drug side effects. Cell Syst 2(3):209–213Google Scholar
  72. 72.
    Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87Google Scholar
  73. 73.
    Shankavaram UT, Reinhold WC, Nishizuka S, Major S, Morita D, Chary KK, Reimers MA, Scherf U, Kahn A, Dolginow D et al (2007) Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Mol Cancer Ther 6(3):820–832Google Scholar
  74. 74.
    Tarca AL, Carey VJ, Xw Chen, Romero R, Drăghici S (2007) Machine learning and its applications to biology. PLoS Comput Biol 3(6):e116Google Scholar
  75. 75.
    Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S, Aurich MK, Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31(5):419Google Scholar
  76. 76.
    Vlassis N, Pacheco MP, Sauter T (2014) Fast reconstruction of compact context-specific metabolic network models. PLoS Comput Biol 10(1):e1003424. Scholar
  77. 77.
    Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84Google Scholar
  78. 78.
    Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, Lander ES, Sabatini DM (2015) Identification and characterization of essential genes in the human genome. Science (New York) 350(6264):1096–1101. (1011.1669)Google Scholar
  79. 79.
    Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM, Network CGAR et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45(10):1113–1120Google Scholar
  80. 80.
    Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR et al (2012) Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41(D1):D955–D961Google Scholar
  81. 81.
    Yizhak K, Gaude E, Le Dévédec S, Waldman YY, Stein GY, van de Water B, Frezza C, Ruppin E (2014) Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer. ELIFE 3:e03641Google Scholar
  82. 82.
    Yizhak K, Le Dévédec SE, Rogkoti VM, Baenke F, de Boer VC, Frezza C, Schulze A, van de Water B, Ruppin E (2014) A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Mol Syst Biol 10(8):744Google Scholar
  83. 83.
    Zampieri G, Coggins M, Valle G, Angione C (2017) A poly-omics machine-learning method to predict metabolite production in CHO cellsGoogle Scholar
  84. 84.
    Zomorrodi AR, Islam MM, Maranas CD (2014) d-OptCom: dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth Biol 3(4):247–257Google Scholar
  85. 85.
    Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc: Ser B (Stat Methodol) 67(2):301–320MathSciNetzbMATHGoogle Scholar
  86. 86.
    Zur H, Ruppin E, Shlomi T (2010) iMAT: an integrative metabolic analysis tool. Bioinformatics 26(24):3140–3142Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maria Pires Pacheco
    • 1
  • Tamara Bintener
    • 1
  • Thomas Sauter
    • 1
    Email author
  1. 1.University of LuxembourgLuxembourg CityLuxembourg

Personalised recommendations