Advertisement

A Graphical Approach for Hybrid Modelling of Intracellular Calcium Dynamics Based on Coloured Hybrid Petri Nets

  • Amr Ismail
  • Mostafa HerajyEmail author
  • Monika Heiner
Chapter
Part of the Computational Biology book series (COBO, volume 30)

Abstract

Intracellular calcium dynamics plays an important role in influencing the outcome of many cellular processes. Constructing and simulating computational models to investigate this biological behaviour are intricate and require the interplay of stochastic and deterministic processes as there are multiple spatial and temporal scales involved. Therefore, many hybrid models have been devised to analyse intracellular calcium dynamics. However, all these models are based on reaction–diffusion equations which are not intuitive for many bioscientists. In contrast, Petri nets do offer an intuitive and graphical approach to model biological processes. To deal with new challenges due to the advances in dynamical modelling, Petri nets have been extended in different directions. Coloured hybrid Petri nets are one of these extensions that support hybrid modelling of complex biological systems using a parametrised language and abstract high-level notations permitting various timing features. In this paper, we present a graphical hybrid model of intracellular calcium dynamics based on coloured hybrid Petri nets. The proposed model can easily be adapted by adjusting a few parameters. Moreover, we illustrate model operations by conducting three simulation experiments in the two-dimensional space. We use Snoopy, a tool to construct and execute qualitative and quantitative Petri nets, to implement the proposed model.

References

  1. 1.
    Ajmone M, Balbo G, Conte G, Donatelli S, Franceschinis G (1995) Modelling with generalized stochastic Petri nets. Wiley series in parallel computing. Wiley, New JerseyGoogle Scholar
  2. 2.
    Alla H, David R (1998) Continuous and hybrid Petri nets. J Circuits Syst Comput 08(01):159–188MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berridge MJ (1997) Elementary and global aspects of calcium signalling. J Exp Biol 200(2):315–319CrossRefGoogle Scholar
  4. 4.
    Berridge M, Lipp P, Bootman M (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–22.  https://doi.org/10.1038/35036035CrossRefGoogle Scholar
  5. 5.
    Daniel MDO, Sean M, Kevin FJ (1998) Inositol 1,4,5-tris-phosphate activation of inositol tris-phosphate receptor \(Ca^{2+}\) channel by ligand tuning of \(Ca^{2+}\) inhibition. Proc Natl Acad Sci U S A 95:15821–15825Google Scholar
  6. 6.
    David R, Alla H (2010) Discrete, continuous, and hybrid Petri nets. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    De Young GW, Keizer J (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in \(Ca^{2+}\) concentration. Proc Natl Acad Sci 89(20):9895–9899.  https://doi.org/10.1073/pnas.89.20.9895CrossRefGoogle Scholar
  8. 8.
    Dobramysl U, Rüdiger S, Erban R (2016) Particle-based multiscale modeling of calcium puff dynamics. Multiscale Model Simul 14(3):997–1016.  https://doi.org/10.1137/15M1015030MathSciNetCrossRefGoogle Scholar
  9. 9.
    Falcke M (2003) On the role of stochastic channel behavior in intracellular \(Ca^{2+}\) dynamics. Biophys J 84:42–56.  https://doi.org/10.1016/S0006-3495(03)74831-0CrossRefGoogle Scholar
  10. 10.
    Falcke M (2004) Reading the patterns in living cells - the physics of \(Ca^{2+}\) signaling. Adv Phys 53:255–440Google Scholar
  11. 11.
    Gnuplot website. Accessed: 14/10/2018. http://www.gnuplot.info/
  12. 12.
    Haseltine E, Rawlings J (2002) Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J Chem Phys 117(15):6959–6969.  https://doi.org/10.1063/1.1505860CrossRefGoogle Scholar
  13. 13.
    Heiner M, Herajy M, Liu F, Rohr C, Schwarick M (2012) Snoopy – a unifying Petri net tool. In: Haddad S, Pomello L(eds) Proceedings PETRI NETS 2012, LNCS, vol. 7347. Springer, Berlin, pp 398–407Google Scholar
  14. 14.
    Heiner M, Sriram K (2010) Structural analysis to determine the core of hypoxia response network. PLOS ONE 5(1):1–17.  https://doi.org/10.1371/journal.pone.0008600CrossRefGoogle Scholar
  15. 15.
    Herajy M, Heiner M (2012) Hybrid representation and simulation of stiff biochemical networks. J Nonlinear Anal: Hybrid Syst 6(4):942–959MathSciNetzbMATHGoogle Scholar
  16. 16.
    Herajy M, Heiner M (2016) Accelerated simulation of hybrid biological models with quasi-disjoint deterministic and stochastic subnets. In: Cinquemani E, Donzé A (eds) Hybrid systems biology: 5th international workshop, HSB 2016, Grenoble, France, 20–21 October 2016, Proceedings, LNBI. Springer, Berlin, pp 20–38.  https://doi.org/10.1007/978-3-319-47151-8_2CrossRefGoogle Scholar
  17. 17.
    Herajy M, Heiner M (2018) Adaptive and bio-semantics of continuous Petri nets: choosing the appropriate interpretation. Fundamenta Informaticae 160(1–2):53–80MathSciNetCrossRefGoogle Scholar
  18. 18.
    Herajy M, Liu F, Heiner M (2018) Efficient modelling of yeast cell cycles based on multisite phosphorylation using coloured hybrid Petri nets with marking-dependent arc weights. Nonlinear Anal: Hybrid Syst 27:191–212.  https://doi.org/10.1016/j.nahs.2017.09.002MathSciNetzbMATHGoogle Scholar
  19. 19.
    Herajy M, Liu F, Rohr C (2014) Coloured hybrid Petri nets for systems biology. In: Proceedings of the 5th international workshop on biological processes and Petri nets (BioPPN), satellite event of PETRI NETS 2014, CEUR workshop proceedings, vol 1159, pp 60–76. http://CEUR-WS.org
  20. 20.
    Herajy M, Liu F, Rohr C, Heiner M (2017) (Coloured) Hybrid Petri nets in Snoopy - user manual. Technical report 01–17, Brandenburg University of Technology Cottbus, Department of Computer Science. https://opus4.kobv.de/opus4-btu/files/4157/csr_01-17.pdf
  21. 21.
    Herajy M, Liu F, Rohr C, Heiner M (2017) Snoopy’s hybrid simulator: a tool to construct and simulate hybrid biological models. BMC systems biology 11(1):71.  https://doi.org/10.1186/s12918-017-0449-6
  22. 22.
    Herajy M, Schwarick M, Heiner M (2013) Hybrid Petri nets for modelling the eukaryotic cell cycle. In: Koutny M, Aalst WMP, Yakovlev A (eds) Transactions on Petri nets and other models of concurrency VIII. Springer, Berlin, pp 123–141CrossRefGoogle Scholar
  23. 23.
    Hindmarsh A, Brown P, Grant K, Lee S, Serban R, Shumaker D, Woodward C (2005) Sundials: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans Math Softw 31:363–396.  https://doi.org/10.1145/1089014.1089020MathSciNetCrossRefGoogle Scholar
  24. 24.
    Jensen K (1981) Coloured Petri nets and the invariant-method. Theor Comput Sci 14(3):317–336MathSciNetCrossRefGoogle Scholar
  25. 25.
    Liu F, Blätke M, Heiner M, Yang M (2014) Modelling and simulating reaction diffusion systems using coloured Petri nets. Comput Biol Med 53:297–308.  https://doi.org/10.1016/j.compbiomed.2014.07.004CrossRefGoogle Scholar
  26. 26.
    Liu F, Heiner M, Gilbert D (2017) Coloured Petri nets for multilevel, multiscale and multidimensional modelling of biological systems. Brief Bioinform bbx150.  https://doi.org/10.1093/bib/bbx150
  27. 27.
    Liu F, Heiner M, Yang M (2012) An efficient method for unfolding colored Petri nets. In: Proceedings of the Winter Simulation Conference, WSC ’12. Winter Simulation Conference, pp 295:1–295:12. http://dl.acm.org/citation.cfm?id=2429759.2430157
  28. 28.
    Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77(4):541–580CrossRefGoogle Scholar
  29. 29.
    Nagaiah C, Rüdiger S, Warnecke G, Falcke M (2008) Adaptive numerical simulation of intracellular calcium dynamics using domain decomposition methods. Appl Numer Math 58(11):1658–1674MathSciNetCrossRefGoogle Scholar
  30. 30.
    Nagaiah C, Rüdiger S, Warnecke G, Falcke M (2012) Adaptive space and time numerical simulation of reaction-diffusion models for intracellular calcium dynamics. Appl Math Comput 218(20):10194–10210MathSciNetCrossRefGoogle Scholar
  31. 31.
    Perc M, Gosak M, Marhl M (2007) Periodic calcium waves in coupled cells induced by internal noise. Chem Phys Lett 437(1):143–147.  https://doi.org/10.1016/j.cplett.2007.02.003. http://www.sciencedirect.com/science/article/pii/S0009261407001510CrossRefGoogle Scholar
  32. 32.
    Rüdiger S, Shuai J, Huisinga W, Nagaiah C, Warnecke G, Parker I, Falcke M (2007) Hybrid stochastic and deterministic simulations of calcium blips. BioPhys J 93:1847–1857CrossRefGoogle Scholar
  33. 33.
    Schaff JC, Gao F, Li Y, Novak IL, Slepchenko BM (2016) Numerical approach to spatial deterministic-stochastic models arising in cell biology. PLOS Comput Biol 12(12):1–23.  https://doi.org/10.1371/journal.pcbi.1005236CrossRefGoogle Scholar
  34. 34.
    Shuai J, Pearson JE, Foskett JK, Mak DOD, Parker I (2007) A kinetic model of single and clustered IP3 receptors in the absence of \(ca^{2+}\) feedback. Biophys J 93(4):1151–1162.  https://doi.org/10.1529/biophysj.107.108795CrossRefGoogle Scholar
  35. 35.
    Smith CA, Yates CA (2018) Spatially-extended hybrid methods: a review. J R Soc Interface 15(139):20170931.  https://doi.org/10.1098/rsif.2017.0931CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of SciencePort Said UniversityPort SaidEgypt
  2. 2.Computer Science InstituteBrandenburg University of Technology Cottbus-SenftenbergCottbusGermany

Personalised recommendations