Automated Negotiations Under User Preference Uncertainty: A Linear Programming Approach

  • Dimitrios TsimpoukisEmail author
  • Tim Baarslag
  • Michael Kaisers
  • Nikolaos G. Paterakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11327)


Autonomous agents negotiating on our behalf find applications in everyday life in many domains such as high frequency trading, cloud computing and the smart grid among others. The agents negotiate with one another to reach the best agreement for the users they represent. An obstacle in the future of automated negotiators is that the agent may not always have a priori information about the preferences of the user it represents. The purpose of this work is to develop an agent that will be able to negotiate given partial information about the user’s preferences. First, we present a new partial information model that is supplied to the agent, which is based on categorical data in the form of pairwise comparisons of outcomes instead of precise utility information. Using this partial information, we develop an estimation model that uses linear optimization and translates the information into utility estimates. We test our methods in a negotiation scenario based on a smart grid cooperative where agents participate in energy trade-offs. The results show that already with very limited information the model becomes accurate quickly and performs well in an actual negotiation setting. Our work provides valuable insight into how uncertainty affects an agent’s negotiation performance, how much information is needed to be able to formulate an accurate user model, and shows a capability of negotiating effectively with minimal user feedback.



This work is part of the Veni research programme with project number 639.021.751, which is financed by the Netherlands Organisation for Scientific Research (NWO).


  1. 1.
    Aydoğan, R., Baarslag, T., Hindriks, K.V., Jonker, C.M., Yolum, P.: Heuristics for using CP-nets in utility-based negotiation without knowing utilities. Knowl. Inf. Syst. 45(2), 357–388 (2015). Scholar
  2. 2.
    Aydogan, R., et al.: A baseline for non-linear bilateral negotiations: the full results of the agents competing in ANAC 2014. In: Intelligent Computational Systems: A Multi-Disciplinary Perspective, pp. 1–25. Bentham Science, July 2016.
  3. 3.
    Aydoğan, R., Yolum, P.: Learning opponent’s preferences for effective negotiation: an approach based on concept learning. Auton. Agent. Multi-Agent Syst. 24(1), 104–140 (2012)CrossRefGoogle Scholar
  4. 4.
    Baarslag, T.: Exploring the Strategy Space of Negotiating Agents: A Framework for Bidding, Learning and Accepting in Automated Negotiation. ST. Springer, Cham (2016). Scholar
  5. 5.
    Baarslag, T., et al.: Evaluating practical negotiating agents: results and analysis of the 2011 international competition. Artif. Intell. 198, 73–103 (2013). Scholar
  6. 6.
    Baarslag, T., Gerding, E.H.: Optimal incremental preference elicitation during negotiation. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, pp. 3–9. AAAI Press (2015).
  7. 7.
    Baarslag, T., Hendrikx, M.J.C., Hindriks, K.V., Jonker, C.M.: Learning about the opponent in automated bilateral negotiation: a comprehensive survey of opponent modeling techniques. Auton. Agent. Multi-Agent Syst. 30(5), 849–898 (2016). Scholar
  8. 8.
    Baarslag, T., Kaisers, M.: The value of information in automated negotiation: a decision model for eliciting user preferences. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017, pp. 391–400. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2017).
  9. 9.
    Baarslag, T., Kaisers, M., Gerding, E.H., Jonker, C.M., Gratch, J.: Computers that negotiate on our behalf: major challenges for self-sufficient, self-directed, and interdependent negotiating agents. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) AAMAS 2017. LNCS (LNAI), vol. 10643, pp. 143–163. Springer, Cham (2017). Scholar
  10. 10.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: a tool for representing and reasoning withconditional ceteris paribus preference statements. ArXiv e-prints, June 2011Google Scholar
  11. 11.
    Cornelio, C., Goldsmith, J., Mattei, N., Rossi, F., Venable, K.B.: Updates and uncertainty in CP-nets. In: Cranefield, S., Nayak, A. (eds.) AI 2013. LNCS (LNAI), vol. 8272, pp. 301–312. Springer, Cham (2013). Scholar
  12. 12.
    Fatima, S.S., Wooldridge, M., Jennings, N.R.: Optimal negotiation strategies for agents with incomplete information. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 377–392. Springer, Heidelberg (2002). Scholar
  13. 13.
    Fatima, S.S., Wooldridge, M., Jennings, N.R.: Multi-issue negotiation under time constraints. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, AAMAS 2002, pp. 143–150. ACM, New York (2002).
  14. 14.
    Greco, S., Kadziński, M., Mousseau, V., Słowiński, R.: Robust ordinal regression for multiple criteria group decision: UTAGMS-GROUP and UTADISGMS-GROUP. Decis. Support Syst. 52(3), 549–561 (2012). Scholar
  15. 15.
    Ito, T., Klein, M., Hattori, H.: A multi-issue negotiation protocol among agents with nonlinear utility functions. Multiagent Grid Syst. 4(1), 67–83 (2008)CrossRefGoogle Scholar
  16. 16.
    Jacquet-Lagreze, E., Siskos, J.: Assessing a set of additive utility functions for multicriteria decision-making, the UTA method. Eur. J. Oper. Res. 10(2), 151–164 (1982). Scholar
  17. 17.
    Jonker, C.M., Robu, V., Treur, J.: An agent architecture for multi-attribute negotiation using incomplete preference information. Auton. Agent. Multi-Agent Syst. 15(2), 221–252 (2007). Scholar
  18. 18.
    Keeney, R., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Trade-Offs. Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics. Cambridge University Press (1993).
  19. 19.
    Marsa-Maestre, I., Lopez-Carmona, M.A., Velasco, J.R., Ito, T., Klein, M., Fujita, K.: Balancing utility and deal probability for auction-based negotiations in highly nonlinear utility spaces. In: IJCAI, vol. 9, pp. 214–219 (2009)Google Scholar
  20. 20.
    Mohammad, Y., Nakadai, S.: FastVOI: efficient utility elicitation during negotiations. In: Miller, T., Oren, N., Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao Son, T. (eds.) PRIMA 2018. LNCS (LNAI), vol. 11224, pp. 560–567. Springer, Cham (2018). Scholar
  21. 21.
    Nguyen, D.V.: Global maximization of UTA functions in multi-objective optimization. Eur. J. Oper. Res. 228(2), 397–404 (2013). Scholar
  22. 22.
    Roszkowska, E.: The application of UTA method for support evaluation negotiation offers. Optimum Stud. Ekonomiczne 2(80), 144–162 (2016). Scholar
  23. 23.
    Sanchez-Anguix, V., Aydoğan, R., Baarslag, T., Jonker, C.M.: Can we reach pareto optimal outcomes using bottom-up approaches? In: Aydoğan, R., Baarslag, T., Gerding, E., Jonker, C.M., Julian, V., Sanchez-Anguix, V. (eds.) COREDEMA 2016. LNCS (LNAI), vol. 10238, pp. 19–35. Springer, Cham (2017). Scholar
  24. 24.
    Srinivasan, V., Shocker, A.D.: Estimating the weights for multiple attributes in a composite criterion using pairwise judgments. Psychometrika 38(4), 473–493 (1973). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dimitrios Tsimpoukis
    • 1
    • 2
    Email author
  • Tim Baarslag
    • 1
    • 3
  • Michael Kaisers
    • 1
  • Nikolaos G. Paterakis
    • 2
  1. 1.Centrum Wiskunde & InformaticaAmsterdamThe Netherlands
  2. 2.Technische Universiteit EindhovenEindhovenThe Netherlands
  3. 3.Department of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations