Advertisement

Predicting Pass Receiver in Football Using Distance Based Features

  • Yann Dauxais
  • Clément GautraisEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11330)

Abstract

This paper presents our approach to the football pass prediction challenge of the Machine Learning and Data Mining for Sport Analytics workshop at ECML/PKDD 2018. Our solution uses distance based features to predict the receiver of a pass. We show that our model is able to improve prediction results obtained on a similar dataset. One particularity of our approach is the use of failed passes to improve the predictions.

Keywords

Pass prediction Distance based features Interception prediction 

References

  1. 1.
    Decroos, T., Van Haaren, J., Dzyuba, V., Davis, J.: STARSS: a spatio-temporal action rating system for soccer. In: Machine Learning and Data Mining for Sports Analytics ECML/PKDD 2017 Workshop (2017)Google Scholar
  2. 2.
    Frank, A.U.: Qualitative spatial reasoning with cardinal directions. In: Kaindl, H. (ed.) 7. Österreichische Artificial-Intelligence-Tagung/Seventh Austrian Conference on Artificial Intelligence. INFORMATIK, vol. 287, pp. 157–167. Springer, Heidelberg (1991).  https://doi.org/10.1007/978-3-642-46752-3_17CrossRefGoogle Scholar
  3. 3.
    Horton, M., Gudmundsson, J., Chawla, S., Estephan, J.: Automated classification of passing in football. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS, vol. 9078, pp. 319–330. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18032-8_25CrossRefGoogle Scholar
  4. 4.
    McSherry, F., Najork, M.: Computing information retrieval performance measures efficiently in the presence of tied scores. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 414–421. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78646-7_38CrossRefGoogle Scholar
  5. 5.
    Steiner, S.: Passing decisions in football: Introducing an empirical approach to estimating the effects of perceptual information and associative knowledge. Front. psychol. 9, 361 (2018)CrossRefGoogle Scholar
  6. 6.
    Travassos, B., Araújo, D., Davids, K., Esteves, P.T., Fernandes, O.: Improving passing actions in team sports by developing interpersonal interactions between players. Int. J. Sports Sci. Coach. 7(4), 677–688 (2012)CrossRefGoogle Scholar
  7. 7.
    Vercruyssen, V., De Raedt, L., Davis, J.: Qualitative spatial reasoning for soccer pass prediction (2016)Google Scholar
  8. 8.
    Wang, Q., Zhu, H., Hu, W., Shen, Z., Yao, Y.: Discerning tactical patterns for professional soccer teams: an enhanced topic model with applications. In: Proceedings of the 21th ACM SIGKDD ICKDM, pp. 2197–2206. ACM (2015)Google Scholar
  9. 9.
    Zimmermann, K., Freksa, C.: Qualitative spatial reasoning using orientation, distance, and path knowledge. Appl. intell. 6(1), 49–58 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Univ. Rennes, INRIA, INSA, CNRS, IRISARennesFrance

Personalised recommendations