Advertisement

Function Private Predicate Encryption for Low Min-Entropy Predicates

  • Sikhar PatranabisEmail author
  • Debdeep Mukhopadhyay
  • Somindu C. Ramanna
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11443)

Abstract

In this work, we propose new constructions for zero inner-product encryption (ZIPE) and non-zero inner-product encryption (NIPE) from prime-order bilinear pairings, which are both attribute and function private in the public-key setting.

  • Our ZIPE scheme is adaptively attribute private under the standard Matrix DDH assumption for unbounded collusions. It is additionally computationally function private under a min-entropy variant of the Matrix DDH assumption for predicates sampled from distributions with super-logarithmic min-entropy. Existing (statistically) function private ZIPE schemes due to Boneh et al. [Crypto’13, Asiacrypt’13] necessarily require predicate distributions with significantly larger min-entropy in the public-key setting.

  • Our NIPE scheme is adaptively attribute private under the standard Matrix DDH assumption, albeit for bounded collusions. In addition, it achieves computational function privacy under a min-entropy variant of the Matrix DDH assumption for predicates sampled from distributions with super-logarithmic min-entropy. To the best of our knowledge, existing NIPE schemes from bilinear pairings were neither attribute private nor function private.

Our constructions are inspired by the linear FE constructions of Agrawal et al. [Crypto’16] and the simulation secure ZIPE of Wee [TCC’17]. In our ZIPE scheme, we show a novel way of embedding two different hard problem instances in a single secret key - one for unbounded collusion-resistance and the other for function privacy. For NIPE, we introduce new techniques for simultaneously achieving attribute and function privacy. We further show that the two constructions naturally generalize to a wider class of predicate encryption schemes such as subspace membership, subspace non-membership and hidden-vector encryption.

Notes

Acknowledgments

We thank the anonymous reviewers of PKC 2019 for useful comments. Patranabis and Mukhopadhyay are patially supported by Qualcomm India Innovation Fellowship grant. Mukhopadhyay is partially supported by a DST India Swarnajayanti Fellowship. Ramanna is partially supported by DST India Inspire Faculty award. We stress that the opinions, findings and conclusions expressed in this material are those of the authors and do not necessarily reflect the views of the funding organizations.

References

  1. 1.
    Abdalla, M., et al.: Searchable encryption revisited: consistency properties, relation to anonymous IBE, and extensions. J. Cryptol. 21, 350–391 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_33CrossRefGoogle Scholar
  3. 3.
    Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prabhakaran, M., Sahai, A.: On the practical security of inner product functional encryption. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 777–798. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_35CrossRefGoogle Scholar
  4. 4.
    Agrawal, S., Bhattacherjee, S., Phan, D.H., Stehlé, D., Yamada, S.: Efficient public trace and revoke from standard assumptions: extended abstract. In: CCS 2017, pp. 2277–2293 (2017)Google Scholar
  5. 5.
    Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_2CrossRefGoogle Scholar
  6. 6.
    Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_12CrossRefGoogle Scholar
  7. 7.
    Attrapadung, N., Libert, B.: Functional encryption for inner product: achieving constant-size ciphertexts with adaptive security or support for negation. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13013-7_23CrossRefGoogle Scholar
  8. 8.
    Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_20CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_30CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_13CrossRefGoogle Scholar
  11. 11.
    Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact Garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_30CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryption: hiding the function in functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_26CrossRefzbMATHGoogle Scholar
  13. 13.
    Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership encryption and its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42033-7_14CrossRefGoogle Scholar
  14. 14.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_29CrossRefGoogle Scholar
  15. 15.
    Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 306–324. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_12CrossRefGoogle Scholar
  16. 16.
    Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_20CrossRefGoogle Scholar
  17. 17.
    Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_19CrossRefGoogle Scholar
  18. 18.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0055717CrossRefGoogle Scholar
  19. 19.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_4CrossRefGoogle Scholar
  20. 20.
    Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49384-7_7CrossRefGoogle Scholar
  21. 21.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_8CrossRefGoogle Scholar
  22. 22.
    Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_27CrossRefGoogle Scholar
  23. 23.
    Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 1–27. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49890-3_1CrossRefGoogle Scholar
  24. 24.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: ACM STOC 2008, pp. 197–206 (2008)Google Scholar
  25. 25.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_30CrossRefGoogle Scholar
  26. 26.
    Gong, J., Dong, X., Chen, J., Cao, Z.: Efficient IBE with tight reduction to standard assumption in the multi-challenge setting. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 624–654. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_21CrossRefGoogle Scholar
  27. 27.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. J. ACM 62(6), 45:1–45:33 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_25CrossRefGoogle Scholar
  29. 29.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98 (2006)Google Scholar
  30. 30.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. J. Cryptol. 26(2), 191–224 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Lewko, A.B.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_20CrossRefzbMATHGoogle Scholar
  32. 32.
    Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11799-2_27CrossRefGoogle Scholar
  33. 33.
    Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_35CrossRefGoogle Scholar
  34. 34.
    Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_22CrossRefGoogle Scholar
  35. 35.
    Patranabis, S., Mukhopadhyay, D., Ramanna, S.C.: Function private predicate encryption for low min-entropy predicates. IACR Cryptology ePrint Archive, p. 1250 (2018)Google Scholar
  36. 36.
    Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_14CrossRefGoogle Scholar
  37. 37.
    Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 206–233. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_8CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  • Sikhar Patranabis
    • 1
    Email author
  • Debdeep Mukhopadhyay
    • 1
  • Somindu C. Ramanna
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations