Advertisement

Efficient Attribute-Based Signatures for Unbounded Arithmetic Branching Programs

  • Pratish DattaEmail author
  • Tatsuaki Okamoto
  • Katsuyuki Takashima
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11442)

Abstract

This paper presents the first attribute-based signature (ABS) scheme in which the correspondence between signers and signatures is captured in an arithmetic model of computation. Specifically, we design a fully secure, i.e., adaptively unforgeable and perfectly signer-private ABS scheme for signing policies realizable by arithmetic branching programs (ABP), which are a quite expressive model of arithmetic computations. On a more positive note, the proposed scheme places no bound on the size and input length of the supported signing policy ABP’s, and at the same time, supports the use of an input attribute for an arbitrary number of times inside a signing policy ABP, i.e., the so called unbounded multi-use of attributes. The size of our public parameters is constant with respect to the sizes of the signing attribute vectors and signing policies available in the system. The construction is built in (asymmetric) bilinear groups of prime order, and its unforgeability is derived in the standard model under (asymmetric version of) the well-studied decisional linear (DLIN) assumption coupled with the existence of standard collision resistant hash functions. Due to the use of the arithmetic model as opposed to the boolean one, our ABS scheme not only excels significantly over the existing state-of-the-art constructions in terms of concrete efficiency, but also achieves improved applicability in various practical scenarios. Our principal technical contributions are (a) extending and refining the techniques of Okamoto and Takashima [PKC 2011, PKC 2013], which were originally developed in the context of boolean span programs, to the arithmetic setting; and (b) innovating new ideas to allow unbounded multi-use of attributes inside ABP’s, which themselves are of unbounded size and input length.

Keywords

Attribute-based signatures Arithmetic branching programs Arithmetic span programs Concrete efficiency Unbounded multi-use of attributes Bilinear groups 

References

  1. 1.
    Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-size structure-preserving signatures: generic constructions and simple assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 4–24. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_3CrossRefGoogle Scholar
  2. 2.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. SIAM J. Comput. 43(2), 905–929 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_30CrossRefGoogle Scholar
  4. 4.
    Datta, P., Dutta, R., Mukhopadhyay, S.: Attribute-based signatures for turing machines. Cryptology ePrint Archive, Report 2017/801Google Scholar
  5. 5.
    El Kaafarani, A., El Bansarkhani, R.: Post-quantum attribute-based signatures from lattice assumptions. Cryptology ePrint Archive, Report 2016/823Google Scholar
  6. 6.
    El Kaafarani, A., Ghadafi, E., Khader, D.: Decentralized traceable attribute-based signatures. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 327–348. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04852-9_17CrossRefGoogle Scholar
  7. 7.
    El Kaafarani, A., Katsumata, S.: Attribute-based signatures for unbounded circuits in the ROM and efficient instantiations from lattices. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 89–119. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76581-5_4CrossRefGoogle Scholar
  8. 8.
    Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_24CrossRefGoogle Scholar
  10. 10.
    Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short attribute-based signatures for threshold predicates. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 51–67. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27954-6_4CrossRefGoogle Scholar
  11. 11.
    Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45465-9_22CrossRefGoogle Scholar
  12. 12.
    Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applications. In: ITCS 1997, pp. 174–183. IEEE (1997)Google Scholar
  13. 13.
    Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 650–662. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43948-7_54CrossRefzbMATHGoogle Scholar
  14. 14.
    Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity Theory Conference 1993, pp. 102–111. IEEE (1993)Google Scholar
  15. 15.
    Keller, M., Orsini, E., Scholl, P.: Mascot: faster malicious arithmetic secure computation with oblivious transfer. In: ACM-CCS 2016, pp. 830–842. ACM (2016)Google Scholar
  16. 16.
    Kowalczyk, L., Liu, J., Malkin, T., Meiyappan, K.: Mitigating the one-use restriction in attribute-based encryption. Cryptology ePrint Archive, Report 2018/645Google Scholar
  17. 17.
    Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its applications. In: ASIACCS 2010, pp. 60–69. ACM (2010)Google Scholar
  18. 18.
    Li, J., Kim, K.: Attribute-based ring signatures. Cryptology ePrint Archive, Report 2008/394Google Scholar
  19. 19.
    Maji, H., Prabhakaran, M., Rosulek, M.: Attribute-based signatures: achieving attribute-privacy and collusion-resistance. Cryptology ePrint Archive, Report 2008/328Google Scholar
  20. 20.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19074-2_24CrossRefGoogle Scholar
  21. 21.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. Cryptology ePrint Archive, Report 2010/595Google Scholar
  22. 22.
    Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36362-7_9CrossRefGoogle Scholar
  23. 23.
    Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone predicates in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_3CrossRefGoogle Scholar
  24. 24.
    Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone predicates in the standard model. Cryptology ePrint Archive, Report 2011/700Google Scholar
  25. 25.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_11CrossRefGoogle Scholar
  26. 26.
    Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_22CrossRefGoogle Scholar
  27. 27.
    Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10366-7_13CrossRefGoogle Scholar
  28. 28.
    Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. Commun. ACM 59(2), 103–112 (2016)CrossRefGoogle Scholar
  29. 29.
    Sakai, Y., Attrapadung, N., Hanaoka, G.: Attribute-based signatures for circuits from bilinear map. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 283–300. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49384-7_11CrossRefGoogle Scholar
  30. 30.
    Sakai, Y., Katsumata, S., Attrapadung, N., Hanaoka, G.: Attribute-based signatures for unbounded languages from standard assumptions. Cryptology ePrint Archive, Report 2018/842Google Scholar
  31. 31.
    Shahandashti, S.F., Safavi-Naini, R.: Threshold attribute-based signatures and their application to anonymous credential systems. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 198–216. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02384-2_13CrossRefGoogle Scholar
  32. 32.
    Takashima, K.: New proof techniques for DLIN-based adaptively secure attribute-based encryption. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp. 85–105. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60055-0_5CrossRefGoogle Scholar
  33. 33.
    Tang, F., Li, H., Liang, B.: Attribute-based signatures for circuits from multilinear maps. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 54–71. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13257-0_4CrossRefGoogle Scholar
  34. 34.
    Tsabary, R.: An equivalence between attribute-based signatures and homomorphic signatures, and new constructions for both. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 489–518. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70503-3_16CrossRefGoogle Scholar
  35. 35.
    Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_4CrossRefGoogle Scholar
  36. 36.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_36CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  • Pratish Datta
    • 1
    Email author
  • Tatsuaki Okamoto
    • 1
  • Katsuyuki Takashima
    • 2
  1. 1.NTT Secure Platform LaboratoriesMusashino-shi, TokyoJapan
  2. 2.Mitsubishi ElectricKamakuraJapan

Personalised recommendations