Advertisement

Hazardous Effects

  • Wout van Bommel
Chapter

Abstract

The hazardous effects of light discussed in this chapter are the adverse effects due to lamp flicker, blue light hazard and bright light at night.

Lamp flicker refers to the modulation in time of the light intensity of a lamp. All AC-operated electrical light sources have a time-modulated light output. Neurological adverse effects of time-modulated light described are epileptic seizures, migraines, headaches, eyestrain, a general feeling of malaise and a decrease of visual performance. A metric to characterise the severity of visible flicker, described in this chapter, is the short-time flicker severity, P st . A metric for another disturbing visible effect of lamp flicker, the stroboscopic effect, is described as the stroboscopic visibility measure, SVM.

The wavelength range of 400–500 nm of light associates with a relatively strong photochemical effect in retinal tissues. This range corresponds to blue light. The possible hazard associated with this visible wavelength range is therefore called “blue light hazard”. CIE has defined a system of blue light hazard risk groups for light sources. It is based on the action spectrum (sensitivity spectrum) for retinal damage risk by visible light of different wavelengths.

Bright light at night has the potential to disrupt the circadian rhythm which in turn could have adverse effects on health in the form of gastrointestinal, cardiovascular, metabolic (diabetes and obesity) disorders and cancer. This chapter describes research in animals and epidemiological studies with humans to provide information about a possible link between cancer and bright light at night.

References

  1. ANSI/IESNA (2007) RP-27.3-07 Photobiological safety for lamps—risk group classification and labellingGoogle Scholar
  2. Archer SN, Oster H (2015) How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J Sleep Res 24:476–493CrossRefGoogle Scholar
  3. Behar-Cohen F, Martinsons C, Viénot F, Zissis G, Barlier-Salsi A, Cesarini JP, Enouf O, Garcia M, Picaud S, Attia D (2011) Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog Retin Eye Res 30:239–257CrossRefGoogle Scholar
  4. Blask D, Dauchy R, Sauer L, Krause J, Brainard G (2002) Light during darkness, melatonin suppression and cancer progression. Neuro endocrinology letters 23(2):52–56Google Scholar
  5. Blask DE, Brainard GC, Dauchy RT, Hanifin JP, Davidson LK, Krause JA, Sauer LA, Rivera-Bermudez MA, Dubocovich ML, Jasser SA, Lynch DT, Rollag MD, Zalatan F (2005) Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res 65:11174–11184CrossRefGoogle Scholar
  6. Bodington JD, Bierman A, Narendran N (2016) A flicker perception metric. Lighting Res Technol 48(5):624–641CrossRefGoogle Scholar
  7. Bullough JD, Sweater Hickcox K, Klein TR, Lok A, Narendran N (2011) Effects of flicker characteristics from solid-state lighting on detection. Lighting Res Technol 43(3):335–348CrossRefGoogle Scholar
  8. Bullough JD, Sweater Hickcox K, Klein TR, Lok A, Narendran N (2012) Detection and acceptability of stroboscopic effects from flicker. Lighting Res Technol 44(4):477–483CrossRefGoogle Scholar
  9. Bullough JD, Bierman A, Rea MS (2019) Evaluating the blue-light hazard from solid state lighting. International Journal of Occupational Safety and Ergonomics 25(2):311–320CrossRefGoogle Scholar
  10. Carrillo-Vico A, Guerrero JM, Lardone PJ (2007) A wide range of melatonin actions in the immune system. In: Melatonin: present and future. Nova Science Publishers, New YorkGoogle Scholar
  11. Carrillo-Vico A, Lardone PJ, Álvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero JM (2013) Melatonin: buffering the immune system. Int J Mol Sci 14:8638–8683CrossRefGoogle Scholar
  12. CEN (2008) IEC/EN Standard 62471 Photobiological safety of lamps and lamp systemsGoogle Scholar
  13. CIE (2002) CIE Standard S 009:2002. Photobiological safety of lamps and lamp systems, ViennaGoogle Scholar
  14. CIE (2011) CIE Standard CIE S 017:2011. ILV: International Lighting Vocabulary, ViennaGoogle Scholar
  15. CIE (2015) ILV: international lighting vocabulary—supplement 1: light emitting diodes (LEDs) and led assemblies—terms and definitions, ViennaGoogle Scholar
  16. CIE (2016) CIE Technical Note CIE TN 006:2016. Visual aspects of time-modulated lighting systems—definitions and measurement models, ViennaGoogle Scholar
  17. CIE (2017) CIE Technical Note CIE TN 008:2017. Final report CIE stakeholder workshop for temporal light modulation standards for lighting systems, ViennaGoogle Scholar
  18. CIE (2019) CIE position statement on blue light hazard, ViennaGoogle Scholar
  19. Cohen M, Lippman M, Chabner B (1978) Role of pineal gland in the aetiology and treatment of breast cancer. Lancet 2:814–816CrossRefGoogle Scholar
  20. Costa G (2016) Introduction to problems of shift work. In: Iskra-Golec I et al (eds) Social and family issues in shift work. Springer International Publishing, ChamGoogle Scholar
  21. De Lange H (1958) Research into the dynamic nature of the human fovea—cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light. JOSA 48(11):777–783ADSCrossRefGoogle Scholar
  22. Debney LM (1984) Visual stimuli as migraine trigger factors. In: Rose FC (ed) Progress in migraine research. Pitman, LondonGoogle Scholar
  23. Eastman AA, Campbell JH (1952) Stroboscopic and flicker effects from fluorescent lamps. Illum Eng 47:27–35Google Scholar
  24. Eckel-Mahan K, Sassone-Corsi P (2009) Metabolism control by the circadian clock and vice versa. Nat Struct Mol Biol 16:462–467CrossRefGoogle Scholar
  25. Fisher R, Harding GFA, Erba G, Barkley GL, Wilkins AJ (2005) Photic- and pattern-induced seizures: a review for the Epilepsy Foundation of America Working Group. Epilepsia 46(9):1426–1441CrossRefGoogle Scholar
  26. Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, Nelson RJ (2010) Light at night increases body mass by shifting the time of food intake. PNAS 107(43):18664–18669ADSCrossRefGoogle Scholar
  27. Fritschi L, Glass DC, Heyworth JS, Aronson K, Girschik J, Boyle T, Grundy A, Erren TC (2011) Hypotheses for mechanisms linking shift work and cancer. Med Hypotheses 77(3):430–436CrossRefGoogle Scholar
  28. Fritschi L, Erren TC, Glass DC, Girschik J, Thomson AK, Saunders C, Boyle T, El-Zaemey S, Rogers P, Peters S, Slevin T, D’Orsogna A, De Vocht F, Vermeulen R, Heyworth JS (2013) The association between different night shift work factors and breast cancer: a case-control study. Br J Cancer 109:2472–2480CrossRefGoogle Scholar
  29. Frost P, Kolstad HA, Bonde JP (2009) Shift work and the risk of ischemic heart disease—a systematic review of the epidemiologic evidence. Scand J Work Environ Health 35:163–179CrossRefGoogle Scholar
  30. Girgert R, Hanf V, Emons G, Gründker C (2009) Membrane-bound melatonin receptor MT1 down-regulates estrogen responsive genes in breast cancer cells. J Pineal Res 47(1):23–31CrossRefGoogle Scholar
  31. GLA (2012) Optical and photobiological safety of LED, CFLs and other high efficiency general lighting sources. A white paper of the Global Lighting AssociationGoogle Scholar
  32. Ham WT, Mueller HA, Sliney DH (1976) Retinal sensitivity to damage from short wavelength light. Nature 260:153–155ADSCrossRefGoogle Scholar
  33. Ham WT, Ruffolo JJ Jr, Mueller HA, Clarke AM, Moon ME (1978) Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length light. Invest Ophthalmol Vis Sci 17:1029–1035Google Scholar
  34. Harding GFA, Jeavons P (1994) Photosensitive epilepsy. Mac Keith Press, LondonGoogle Scholar
  35. Hill SM, Belancio VP, Dauchy RT, Xiang S, Brimer S, Mao L, Hauch A, Lundberg PW, Summers W, Yuan L, Frasch T, Blask DE (2015) Melatonin: an inhibitor of breast cancer. Endocr Relat Cancer 22(3):R183–R204CrossRefGoogle Scholar
  36. Hunter JJ, Morgan JIW, Merigan WH, Sliney DH, Sparrow JR, Williams DR (2012) The susceptibility of the retina to photochemical damage from visible light. Prog Retin Eye Res 31:28–42CrossRefGoogle Scholar
  37. IARC (2010) Shift work. In: IARC monographs on the evaluation of carcinogenic risks to humans, volume 98: painting, firefighting and shift work. International Agency for Research on Cancer, Lyon, pp 563–766Google Scholar
  38. ICNIRP (2004) ICNIRP guidelines on limits of exposure to ultraviolet radiation of wavelength between 180 nm ad 400 nm (incoherent optical radiation). Health Phys 87:171–186CrossRefGoogle Scholar
  39. ICNIRP (2013) ICNIRP guidelines on limits of exposure to incoherent visible and infrared radiation. Health Phys 105(1):74–96Google Scholar
  40. IEC (2006) IES/CIE Standard IEC 62471:2006/CIE S 009:2002 Photobiological safety of lamps and lamp systemsGoogle Scholar
  41. IEC (2010) IEC 61000-4-15:2010 Electromagnetic compatibility (EMC)—Part 4-15: Testing and measurement techniques—flickermeter—functional and design specificationsGoogle Scholar
  42. IEC (2013) IEC 61000-3-3:2013 Electromagnetic compatibility (EMC)—Part 3-3: Limits—limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤16 A per phase and not subject to conditional connectionGoogle Scholar
  43. IEC (2014) IEC Technical report TR 62778:2014 Application of IEC 62471 for the assessment of blue light hazard to light sources and luminairesGoogle Scholar
  44. IEC (2015). IEC Technical Report TR 61547-1:2015 Equipment for general lighting purposes—EMC immunity requirements—Part 1: An objective voltage fluctuation immunity test methodGoogle Scholar
  45. IEC (2017) IEC Technical Report TR 61547-1:2017 Equipment for general lighting purposes—EMC immunity requirements—Part 1: An objective light flickermeter and voltage fluctuation immunity test methodGoogle Scholar
  46. IEEE (2015) IEEE Standard 1789-2015: IEEE recommended practices for modulating current in high-brightness LEDs for mitigating health risks to viewers. IEEE, New YorkGoogle Scholar
  47. Ijaz S, Verbeek J, Seidler A, Lindbohm ML, Ojajärvi A, Orsini N, Costa G, Neuvonen K (2013) Night-shift work and breast cancer—a systematic review and meta-analysis. Scand J Work Environ Health 39(5):431–447CrossRefGoogle Scholar
  48. Kamdar BB, Tergas AI, Mateen FJ, Bhayani NH, Oh J (2013) Night-shift work and risk of breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 138(1):291–301CrossRefGoogle Scholar
  49. Kantermann T, Roenneberg T (2009) Is light-at-night a health risk factor or a health risk predictor? Chronobiol Int 26(6):1069–1074CrossRefGoogle Scholar
  50. Kelly DH (1961) Visual responses to time-dependent stimuli. I. Amplitude sensitivity measurements. JOSA 51(4):422–429ADSCrossRefGoogle Scholar
  51. Knower KC, Takagi K, Miki Y, Sasano H, Simpson ER, Clyne CD (2012) Melatonin suppresses aromatase expression and activity in breast cancer associated fibroblasts. Breast Cancer Res Treat 132(2):765–771CrossRefGoogle Scholar
  52. Küller R, Laike T (1998) The impact of flicker from fluorescent lighting on well-being, performance, and physiological arousal. Ergonomics 41(4):433–447CrossRefGoogle Scholar
  53. Morris CJ, Yang JN, Scheer FA (2012) The impact of the circadian timing system on cardiovascular and metabolic function. Prog Brain Res 199:337–358CrossRefGoogle Scholar
  54. Organisciak DT, Vaughan DK (2010) Retinal light damage: mechanisms and protection. Prog Retin Eye Res 29:113–134CrossRefGoogle Scholar
  55. Perz M, Vogels IMLC, Sekulovski D, Wang L, Tu Y, Heynderickx IEJ (2015) Modelling the visibility of the stroboscopic effect occurring in temporally modulated light systems. Lighting Res Technol 47:281–300CrossRefGoogle Scholar
  56. Perz M, Sekulovski D, Vogels I, Heynderickx I (2017) Leukos 13(3):127–142CrossRefGoogle Scholar
  57. Reiter RJ, Rosales-Corral SA, Tan D-X, Acuna-Castroviejo D, Qin L, Yang S-F, Xu K (2017) Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. Int J Mol Sci 18(843):1–47Google Scholar
  58. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrora F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9CrossRefGoogle Scholar
  59. SCENIHR (2012) Health effects of artificial light. European Commission, BrusselsGoogle Scholar
  60. Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Colditz GA (2001) Rotating night shifts and risks of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst 93:1563–1568CrossRefGoogle Scholar
  61. Schernhammer ES, Kroenke CH, Laden F, Hankinson SE (2006) Night work and risk of breast cancer. Epidemiology 17:108–111CrossRefGoogle Scholar
  62. Shepherd AJ (2010) Visual stimuli, light and lighting are common triggers of migraine and headache. J Light Vis Environ 34:94–100ADSCrossRefGoogle Scholar
  63. Sliney DH (2002) How light reaches the eye and its components. Int J Toxicol 21:501–509CrossRefGoogle Scholar
  64. Sliney DH, Bergman R, O’Hagan J (2016) Photobiological risk classification of lamps and lamp systems—history and rationale. Leukos 12(4):213–234CrossRefGoogle Scholar
  65. Sliwinski T, Rozej W, Morawiec-Bajda A, Morawiec Z, Reiter RJ, Blasiak J (2007) Protective action of melatonin oxidative DNA damage—chemical inactivation versus base-excision repair. Mutat Res Genet Toxicol Environ Mutagen 634:220–227CrossRefGoogle Scholar
  66. Smyth VO, Winter AL (1964) The EFG in migraine. Electroencephalogr Clin Neurophysiol 16:194–202CrossRefGoogle Scholar
  67. Travis RC, Balkwill A, Fensom GK, Appleby PN, Reeves GK, Wang XS, Roddam AW, Gathani T, Peto R, Green J, Key TJ, Beral V (2016) Night shift work and breast cancer incidence: three prospective studies and meta-analysis of published studies. J Natl Cancer Inst 108(12):1–9CrossRefGoogle Scholar
  68. Valberg A (2005) Light vision color. John Wiley & Sons Ltd, ChichesterGoogle Scholar
  69. Van Norren D, Gorgels GMF (2011) The action spectrum of photochemical damage to the retina: a review of monochromatic threshold data. Photochem Photobiol 87(4):747–753CrossRefGoogle Scholar
  70. Veitch JA, Mccoll SL (1995) Modulation of fluorescent light: flicker rate and light source effects on visual performance and visual comfort. Lighting Res Technol 27(4):243–256CrossRefGoogle Scholar
  71. Veitch JA, Newsham GR (1998) Lighting quality and energy-efficiency effects on task performance, mood, health, satisfaction and comfort. J Illum Eng Soc 27(1):107–129CrossRefGoogle Scholar
  72. Wang XS, Armstrong ME, Cairns BJ, Key TJ, Travis RC (2011) Shift work and chronic disease: the epidemiological evidence. Occup Med (Lond) 61:78–89CrossRefGoogle Scholar
  73. Wang L, Tu Y, Lu L, Perz M, Vogels IMLC, Heynderickx IEJ (2015) 50.2: Invited paper: stroboscopic effect of LED lighting. SID Symp Digest Tech Paper 46:754–757CrossRefGoogle Scholar
  74. Wegrzyn LR, Tamimi RM, Rosner BA, Brown SB, Stevens RG, Eliassen AH, Laden F, Willett WC, Hankinson SE, Schernhammer ES (2017) Rotating night-shift work and the risk of breast cancer in the Nurses’ Health Studies. Am J Epidemiol 186(5):532–540CrossRefGoogle Scholar
  75. Wilkins AJ (1986) Intermittent illumination from visual display units and fluorescent lighting affects movements of the eyes across text. Hum Factors 28(1):75–81CrossRefGoogle Scholar
  76. Wilkins AJ, Nimmo-Smith IM, Slater S, Bedocs L (1989) Fluorescent lighting, headaches and eye-strain. Lighting Res Technol 21(1):11–18CrossRefGoogle Scholar
  77. Wilkins AJ, Veitch JA, Lehman B (2010) LED lighting flicker and potential health concerns: IEEE Standard PAR1789 update. Proceedings of the energy conversion congress and exposition (ECCE). pp 171–178Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wout van Bommel
    • 1
  1. 1.Van Bommel Lighting ConsultantNuenenThe Netherlands

Personalised recommendations