Advertisement

Nanotechnology: A Boon for Food Safety and Food Defense

  • Poorva Sharma
  • Anil Panghal
  • Vishwajeet Gaikwad
  • Shubham Jadhav
  • Akshay Bagal
  • Akshay Jadhav
  • Navnidhi Chhikara
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Nanotechnology has the ability to innovate the agricultural and food processing industries, focusing mainly on target delivery of nutrients, determination of microbial and chemical contaminants, food storage, food processing and transportation, and also other aspects of food safety to enhance the shelf life of food. In the food industry, there are pervasive functions of nanostructured materials, from Metals, metal oxides of inorganic materials, and their nanocomposites to bioactive agents of nano-organic materials. Nanotechnology offers various benefits, but nanostructured materials raise issues related to safety. Therefore, safety and health-governing strategies should be assessed at the time of processing, preparation, smart packaging, and penetrating nanoprocessed food products. There is also a need for understanding of nanotechnology applications in the packaging and food processing industries to recognize the advantages and possible risks involved in use of nanostructured materials.

In recent years, a new stage of nanotechnology has been reached for targeting the multiple field such as protein biomarkers, drugs, nucleic acids, cancer cells, and infectious agents. Carbon nanotubes, quantum dots, magnetic nanoparticles, nanowires, and nanosensors, such as giant magnetoresistance sensors, are used in quantitative detection of biomolecules, with moderately good accuracy. There is increasing interest in use of magnetic fields in biosensing applications due to absence of ferromagnetic property in biological sample and thus no interference during detection. Hence, the latest techniques in nanotechnology have wide applications for monitoring and detection of disease related to food.

Keywords

Food safety Food shelf life Food packaging Quantum dots Magnetic nanoparticles Nanosensors 

References

  1. Banerjee T, Shelby T, Santra S (2017) How can nanosensors detect bacterial contamination before it ever reaches the dinner table? Future Microbiol 12:97–100PubMedCrossRefGoogle Scholar
  2. Bata-Vidács I, Adányi N, Beczner J, Farkas J, Székács A (2013) Nanotechnology and microbial food safety. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Center, Badajoz, pp 155–159Google Scholar
  3. Boom RM (2011) Nanotechnology in food production. In: Frewer LJ, Norde W, Fischer A, Kampers F (eds) Nanotechnology in the agri-food sector: implications for the future. Weinheim: Wiley-VCH, pp 39–57Google Scholar
  4. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25(3):241–258CrossRefGoogle Scholar
  5. Chawengkijwanich C, Hayata Y (2008) Development of TiO2 powder–coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123(3):288–292PubMedCrossRefGoogle Scholar
  6. Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120PubMedCrossRefGoogle Scholar
  7. Ching KH, Lin A, McGarvey JA, Stanker LH, Hnasko R (2012) Rapid and selective detection of botulinum neurotoxin serotype-A and-B with a single immunochromatographic test strip. J Immunol Methods 380(1–2):23–29PubMedCrossRefGoogle Scholar
  8. Chhikara N, Jaglan S, Sindhu N, Anshid V., Charan MVS, Panghal A (2018) Importance of Traceability in Food Supply Chain for Brand Protection and Food Safety Systems Implementation. Annals of Bio 34(2):111–118Google Scholar
  9. Cho YJ, Kim CJ, Kim N, Kim CT, Park B (2008) Some cases in applications of nanotechnology to food and agricultural systems. Biochip J 2(3):183–185Google Scholar
  10. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255–5262CrossRefGoogle Scholar
  11. Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci Technol 24(1):30–46CrossRefGoogle Scholar
  12. Farhang B (2009) Nanotechnology and applications in food safety. In: Barbosa-Canovas GV, Mortimer A, Lineback D, Spiess W, Buckle K, Colonna P (eds) Global issues in food science and technology. Academic, San Diego, pp 401–410CrossRefGoogle Scholar
  13. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1(1):1–21CrossRefGoogle Scholar
  14. Geys J, Nemmar A, Verbeken E, Smolders E, Ratoi M, Hoylaerts MF, Nemery B, Hoet PH (2008) Acute toxicity and prothrombotic effects of quantum dots: impact of surface charge. Environ Health Perspect 116(12):1607PubMedPubMedCentralCrossRefGoogle Scholar
  15. Global Food Safety Initiative (2013) The Global Food Safety Initiative: GFSI guidance document. Version 6.3. https://www.mygfsi.com/images/mygfsi/gfsifiles/information-kit/GFSI_Guidance_Document.pdf. Accessed 4th October 2018
  16. Glynn B, Lahiff S, Wernecke M, Barry T, Smith TJ, Maher M (2006) Current and emerging molecular diagnostic technologies applicable to bacterial food safety. Int J Dairy Technol 59(2):126–139CrossRefGoogle Scholar
  17. Graveland-Bikker JF, Kruif de CG (2006) Food nanotechnology. Trends Food Sci Technol 17(5):196–203CrossRefGoogle Scholar
  18. Handford CE, Dean M, Henchion M, Spence M, Elliott CT, Campbell K (2014) Implications of nanotechnology for the agri-food industry: opportunities, benefits and risks. Trends Food Sci Technol 40(2):226–241CrossRefGoogle Scholar
  19. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101CrossRefGoogle Scholar
  20. Krishna VD, Wu K, Su D, Cheeran MC, Wang JP, Perez A (2018) Nanotechnology: review of concepts and potential application of sensing platforms in food safety. Food Microbiol 75:47–54.  https://doi.org/10.1016/j.fm.2018.01.025PubMedCrossRefGoogle Scholar
  21. Kuswandi BD, Heng LY (2017) Nanosensors for the detection of food contaminants. In: Grumezescu AM, Oprea A (eds) Nanotechnology applications in food. Academic, London, pp 307–333CrossRefGoogle Scholar
  22. Landeghem FK, Maier-Hauff K, Jordan A, Hoffmann KT, Gneveckow U, Scholz R, Thiesen B, Brück W, Von Deimling A (2009) Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30(1):52–57PubMedCrossRefGoogle Scholar
  23. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R Rep 63(3):100–125CrossRefGoogle Scholar
  24. Lee SH, Pie JE, Kim YR, Lee HR, Son SW, Kim MK (2012) Effects of zinc oxide nanoparticles on gene expression profile in human keratinocytes. Mol Cell Toxicol 8(2):113–118CrossRefGoogle Scholar
  25. Lizundia E, Ruiz-Rubio L, Vilas JL, León LM (2016) Poly(l-lactide)/ZnO nanocomposites as efficient UV-shielding coatings for packaging applications. J Appl Polym Sci 133:2CrossRefGoogle Scholar
  26. López-Rubio A, Sanchez E, Wilkanowicz S, Sanz Y, Lagaron JM (2012) Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocoll 28(1):159–167CrossRefGoogle Scholar
  27. Luo R (2014) A colorimetric assay method for invA gene of Salmonella using DNAzyme probe self-assembled gold nanoparticles as single tag. Sensors Actuators B Chem 198:87–93CrossRefGoogle Scholar
  28. Malhotra BD, Srivastava S, Ali MA, Singh C (2014) Nanomaterial-based biosensors for food toxin detection. Appl Biochem Biotechnol 174(3):880–896CrossRefPubMedGoogle Scholar
  29. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int 2013:942916.  https://doi.org/10.1155/2013/942916PubMedPubMedCentralCrossRefGoogle Scholar
  30. Manning L, Soon JM (2016) Food safety, food fraud, and food defense: a fast evolving literature. J Food Sci 81(4):823–834.  https://doi.org/10.1111/1750-3841.13256CrossRefGoogle Scholar
  31. Marchant G, Sylvester D, Abbott KW (2009) Nanotechnology regulation: the United States approach. In: Hodge GA, Bowman D, Ludlow K (eds) New global frontiers in regulation: the age of nanotechnology. Cheltenham: Edward Elgar, pp 189–211Google Scholar
  32. Mehrad B, Ravanfar R, Licker J, Regenstein JM, Abbaspourrad A (2018) Enhancing the physicochemical stability of β-carotene solid lipid nanoparticle (SLNP) using whey protein isolate. Food Res Int 105:962–969PubMedCrossRefGoogle Scholar
  33. Mills A, Hazafy D (2009) Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sensors Actuators B Chem 136(2):344–349CrossRefGoogle Scholar
  34. Mitenius N, Kennedy SP, Busta FF (2014) Food defense. In: Motarjemi Y, Lelieveld H (eds) Food safety management: a practical guide for the food industry. Academic, London, pp 937–958CrossRefGoogle Scholar
  35. Momin JK, Jayakumar C, Prajapati JB (2013) Potential of nanotechnology in functional foods. Emirates J Food Agric 25(1):10–19CrossRefGoogle Scholar
  36. Morones JR (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353CrossRefPubMedGoogle Scholar
  37. Orlov AV (2013) Magnetic immunoassay for detection of staphylococcal toxins in complex media. Anal Chem 85(2):1154–1163PubMedCrossRefGoogle Scholar
  38. Pal S, Alocilja EC, Downes FP (2007) Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species. Biosens Bioelectron 22(9–10):2329–2336PubMedCrossRefGoogle Scholar
  39. Panghal A, Chhikara N, Sindhu N, Jaglan S (2018a) Role of Food Safety Management Systems in safe food production: A review. Journal of Food Safety 38(4):e12464CrossRefGoogle Scholar
  40. Panghal A, Yadav DN, Khatkar BS, Sharma H, Kumar V, Chhikara N (2018b) Post-harvest malpractices in fresh fruits and vegetables: food safety and health issues in India. Nutrition & Food Sci 48(4):561–578Google Scholar
  41. Park KS, Chung HJ, Khanam F, Lee H, Rashu R, Bhuiyan MT, Qadri F (2016) A magneto-DNA nanoparticle system for the rapid and sensitive diagnosis of enteric fever. Sci Rep 6:32878PubMedPubMedCentralCrossRefGoogle Scholar
  42. Pool H, Quintanar D, Dios Figueroa J, Mano CM, Bechara JEH, Godínez LA, Mendoza S (2012) Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles. J Nanomater 2012:86CrossRefGoogle Scholar
  43. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  44. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330.  https://doi.org/10.1002/wnan.1363CrossRefGoogle Scholar
  45. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014.  https://doi.org/10.3389/fmicb.2017.01014PubMedPubMedCentralCrossRefGoogle Scholar
  46. Prasad R, Kumar V and Kumar M (2017b) Nanotechnology: Food and Environmental Paradigm. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-4678-0)Google Scholar
  47. Rashidi L, Khosravi-Darani K (2011) The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr 51(8):723–730PubMedCrossRefGoogle Scholar
  48. Ravichandran R (2009) Nanoparticles in drug delivery: potential green nanobiomedicine applications. Int J Green Nanotechnol Biomed 1(2):108–130Google Scholar
  49. Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int J Green Nanotechnol Phys Chem 1(2):72–96CrossRefGoogle Scholar
  50. Rojas-Graü MA, Soliva-Fortuny R, Martín-Belloso O (2009) Edible coatings to incorporate active ingredients to fresh-cut fruits: a review. Trends Food Sci Technol 20(10):438–447CrossRefGoogle Scholar
  51. Rossi M, Cubadda F, Dini L, Terranova ML, Aureli F, Sorbo A, Passeri D (2014) Scientific basis of nanotechnology, implications for the food sector and future trends. Trends Food Sci Technol 40(2):127–148CrossRefGoogle Scholar
  52. Shao H, Min C, Issadore D, Liong M, Yoon TJ, Weissleder R, Lee H (2012) Magnetic nanoparticles and microNMR for diagnostic applications. Theranostics 2(1):55PubMedPubMedCentralCrossRefGoogle Scholar
  53. Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89PubMedCrossRefGoogle Scholar
  54. Star A (2006) Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc Natl Acad Sci U S A 103(4):921–926PubMedPubMedCentralCrossRefGoogle Scholar
  55. Tarui A, Kawasaki H, Taiko T, Watanabe T, Yonezawa T, Arakawa R (2009) Gold-nanoparticle-supported silicon plate with polymer micelles for surface-assisted laser desorption/ionization mass spectrometry of peptides. J Nanosci Nanotechnol 9(1):159–164PubMedCrossRefGoogle Scholar
  56. US Food and Drug Administration (2014) CFR—code of federal regulations title 21. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm. Accessed 05 Nov 2018
  57. Valdés MG, González ACV, Calzón JAG, Díaz-García ME (2009) Analytical nanotechnology for food analysis. Microchim Acta 166(1–2):1–19CrossRefGoogle Scholar
  58. Wang R, Ruan C, Kanayeva D, Lassiter K, Li Y (2008) TiO2 nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of Listeria monocytogenes. Nano Lett 8(9):2625–2631PubMedCrossRefGoogle Scholar
  59. Wang L, Cai J, Wang Y, Fang Q, Wang S, Cheng Q, Liu F (2014) A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides. Microchim Acta 181(13–14):1565–1572CrossRefGoogle Scholar
  60. Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71(9):R107–R116CrossRefGoogle Scholar
  61. Wu W, Li J, Pan D, Li J, Song S, Rong M, Lu J (2014) Gold nanoparticle-based enzyme-linked antibody–aptamer sandwich assay for detection of Salmonella typhimurium. ACS Appl Mater Interfaces 6(19):16974–16981PubMedCrossRefGoogle Scholar
  62. Wu K, Batra A, Jain S, Ye C, Liu J, Wang JP (2015) A simulation study on superparamagnetic nanoparticle based multi-tracer tracking. Appl Phys Lett 107(17):173701CrossRefGoogle Scholar
  63. Youssef AM (2013) Polymer nanocomposites as a new trend for packaging applications. Polym-Plast Technol Eng 52(7):635–660CrossRefGoogle Scholar
  64. Yu X, Yang H (2017) Pyrethroid residue determination in organic and conventional vegetables using liquid–solid extraction coupled with magnetic solid phase extraction based on polystyrene-coated magnetic nanoparticles. Food Chem 217:303–310PubMedCrossRefGoogle Scholar
  65. Yue HY, Huang S, Chang J, Heo C, Yao F, Adhikari S, Li B (2014) ZnO nanowire arrays on 3D hierarchical graphene foam: biomarker detection of Parkinson’s disease. ACS Nano 8(2):1639–1646PubMedCrossRefGoogle Scholar
  66. Zhao Y, Li Y, Jiang K, Wang J, White WL, Yang S, Lu J (2017) Rapid detection of Listeria monocytogenes in food by biofunctionalized magnetic nanoparticle based on nuclear magnetic resonance. Food Control 71:110–116CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Poorva Sharma
    • 1
  • Anil Panghal
    • 1
  • Vishwajeet Gaikwad
    • 1
  • Shubham Jadhav
    • 1
  • Akshay Bagal
    • 1
  • Akshay Jadhav
    • 1
  • Navnidhi Chhikara
    • 1
  1. 1.Department of Food Technology and NutritionLovely Professional UniversityPhagwaraIndia

Personalised recommendations