Advertisement

Application of Nanotechnology in Diagnosis, Drug Dissolution, Drug Discovery, and Drug Carrier

  • Abhishek Kumar Mishra
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Nanotechnology (NT) is the branch of science that deals with the matter at nanoscale. Nanostructured materials offer great advantage in the field of diagnosis due to their unique physiochemical properties. The conventional method of diagnosis is time taking and demands expertise. Early diagnosis of major harmful diseases such as cancer leads to better prognosis. Nanodiagnostics (NDs) is the application of nanostructures in biomedical sciences. It offers cheaper and early diagnosis, and there is no need for experts to perform the tests based on nanotechnology. Nanoscale-fabricated structured devices provide diagnostic results available at the patient’s bedside i.e., point-of-care diagnosis. Common nanomaterials such as nanoparticles, nanowires, nanorobots, and nanocrystals are used to fabricate useful nanodevices such as nanobiosensors, biochips, etc. Application of nanotechnology has been seen everywhere in medical sciences. The use of nanomaterials in nanodiagnostics significantly improved the method of diagnosis in techniques such as immunohistochemistry (IHC), genotyping, cancer detection, and biomarker detection. Nano-based contrast agents are frequently in use in the field of imaging such as MRI, ultrasound, PET/CT scan, and so on. NT also troubleshoots one of the major problems in pharmaceutical industries, i.e., poor solubility of drugs. Poor solubility of drugs decreases the bioavailability of drugs and increases the systemic toxicity in vivo. Nanocarriers such as liposomes, dendrimers, and polymeric micelles not only overcome this problem but also offer some additional advantage like targeted drug delivery. Integration of nanotechnology with other techniques like microfluidics holds great promises in the field of diagnosis.

Keywords

Nanotechnology Nanoparticles Lab-on a-chip Nanodiagnostics Nanosensors 

References

  1. Akbarzadeh A, Sadabady RR, Davaran S (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alric C, Taleb J, Le Duc G et al (2008) Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc 130:5908–5915PubMedCrossRefGoogle Scholar
  3. Aulton ME (2007) Pharmaceutics: the design and manufacture of medicines, 3rd edn. Churchill Livingstone, LondonGoogle Scholar
  4. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612PubMedCrossRefGoogle Scholar
  5. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984.  https://doi.org/10.3389/fmicb.2016.01984CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem.  https://doi.org/10.3389/fchem.2019.00065
  7. Azmi MA, Tehrani Z, Lewis RP (2014) Highly sensitive covalently functionalized integrated silicon nanowire biosensor devices for detection of cancer risk biomarker. Biosens Bioelectron 52:216–224CrossRefGoogle Scholar
  8. Bahadorimehr AR, Jumril Y, Majlis BY (2010) Low cost fabrication of microfluidic microchannels for lab-on-a-chip applications. International conference on electronic devices, systems and applications, pp 242–244Google Scholar
  9. Barone PW, Baik S, Heller DA, Strano MS (2005) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4:86–92PubMedCrossRefGoogle Scholar
  10. Beishon M (2013) Exploiting a Nano-Sized Breach in Cancer’s Defences. Cancer World :14–21Google Scholar
  11. Boisselier BE, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782PubMedCrossRefGoogle Scholar
  12. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 4:MR17–MR71CrossRefGoogle Scholar
  13. Caban S, Aytekin E, Sahin A, Capan Y (2014) Nanosystems for drug delivery. OA Drug Des Deliv 2(1):2Google Scholar
  14. Cabibbe AM, Miotto P, Moure R (2015) Lab-on-chip-based platform for fast molecular diagnosis of multidrug-resistant tuberculosis. J Clin Microbiol 53(12):3876–3880PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cai QY, Kim SH, Choi KS et al (2007) Colloidal gold nanoparticles as a blood-pool contrast agent for x-ray computed tomography in mice. Investig Radiol 42(12):797–806CrossRefGoogle Scholar
  16. Caminade AM, Turrin CO (2014) Dendrimers for drug delivery. J Mater Chem B 2:4055–4066CrossRefGoogle Scholar
  17. Cash KJ, Clark HA (2010) Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 16(12):584–593PubMedPubMedCentralCrossRefGoogle Scholar
  18. Challa S, Kumar SR (2007) Nanomaterials for medical diagnosis and therapy (Handbook). The Wiley network USAGoogle Scholar
  19. Chan HK, Kwok PCL (2011) Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev 63:406–416PubMedCrossRefGoogle Scholar
  20. Chen Z, Meng H, Xing G (2007) Toxicological and biological effects of nanomaterials. Int J Nanotechnol 4:179–196CrossRefGoogle Scholar
  21. Chen Y, Ai K, Liu J, Ren X (2016) Polydopamine-based coordination nanocomplex for T1/T2 dual mode magnetic resonance imaging-guided chemo-photothermal synergistic therapy. Biomaterials 77:198–206PubMedCrossRefGoogle Scholar
  22. Chen K, Yuen C, Aniweh Y (2017) Recent progress in the development of diagnostic tests for malaria. Diagnostics (Basel) 7(3):54CrossRefGoogle Scholar
  23. Cheng WP, Gray AI, Tetley L, Hang TLB (2006) Polyelectrolyte nanoparticles with high drug loading enhance the oral uptake of hydrophobic compounds. Biomacromolecules 7:1509–1520PubMedCrossRefGoogle Scholar
  24. Cheng K, El-Boubbou K, Landry CC (2012) Binding of HIV-1 gp120 glycoprotein to silica nanoparticles modified with CD4 glycoprotein and CD4 peptide fragments. ACS Appl Mater Interfaces 4(1):235–243PubMedCrossRefGoogle Scholar
  25. Chetoni P, Burgalassi S, Monti D, Najarro M (2007) Liposome-encapsulated mitomycin C for the reduction of corneal healing rate and ocular toxicity. J Drug Deliv Sci Technol 17(1):43–48CrossRefGoogle Scholar
  26. Chikkaveeraiah BV, Bhirde A, Malhotra R, Patel V, Gutkind JS (2009) Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal Chem 81(21):9129–9134PubMedCrossRefGoogle Scholar
  27. Choi S, Tripathi A, Singh D (2014) Smart nanomaterials for biomedics. J Biomed Nanotechnol 10(10):3162–3188PubMedCrossRefGoogle Scholar
  28. Cole LE, Ross RD, Tilley JM, Vargo-Gogola T (2015) Gold nanoparticles as contrast agents in X-ray imaging and computed tomography. Nanomedicine 10:321–341PubMedCrossRefGoogle Scholar
  29. Coughlin AJ, Ananta JS, Deng N, Larina IV, Decuzzi P, West JL (2014) Gadolinium-conjugated gold nanoshells for multimodal diagnostic imaging and photothermal cancer therapy. Small 10:556–565PubMedCrossRefGoogle Scholar
  30. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:89–92CrossRefGoogle Scholar
  31. Daraee H, Eatemadi A, Abbasi E, Aval SF, Kouhi M (2016) Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol 44:410–422PubMedCrossRefPubMedCentralGoogle Scholar
  32. Ding H, Wang X, Zhang S, Liu X (2012) Applications of polymeric micelles with tumor targeted in chemotherapy. J Nanopart Res 14:1–13Google Scholar
  33. Dixon C, Ng AHC, Fobel R, Miltenburg MB, Wheeler AR (2016) An inkjet printer, roll-coated digital microfluidic device for inexpensive, miniaturized diagnostic assays. Lab Chip 16(23):4560–4568PubMedCrossRefPubMedCentralGoogle Scholar
  34. Draz MS, Shafiee H (2018) Applications of gold nanoparticles in virus detection. Theranostics 8(7):1985–2017PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dua JS, Rana AC, Bhandari AK (2012) Liposomes methods of preparation and applications. Int J Pharm Stud Res 3:14–20Google Scholar
  36. Fan L, Qi H, Teng J, Su B (2016) Identification of serum miRNAs by nano-quantum dots microarray as diagnostic biomarkers for early detection of non-small cell lung cancer. Tumour Biol 37:7777–7784PubMedCrossRefPubMedCentralGoogle Scholar
  37. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fazio B, Andrea CD, Foti A, Messina E (2016) SERS detection of Biomolecules at Physiological pH via aggregation of Gold Nanorods mediated by Optical Forces and Plasmonic Heating. Sci Rep 6:26952PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fonte P, Noguiera T, Gehm C (2011) Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Deliv Transl Res 1(4):299–308PubMedCrossRefPubMedCentralGoogle Scholar
  40. Fritz J (2008) Cantilever biosensors. Analyst 133:855–863PubMedCrossRefGoogle Scholar
  41. Fu L, Ke H (2016) Nanomaterials incorporated ultrasound contrast agents for cancer theranostics. Cancer Biol Med 13(3):313–324PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fu Y, Li P, Wang T (2010) Novel polymeric bionanocomposites with catalytic Pt nanoparticles label immobilized for high performance amperometric immunoassay. Biosens Bioelectron 25:1699–1704PubMedCrossRefGoogle Scholar
  43. Fuente DL, Jesus M (2006) Gold and gold-Iron oxide magnetic glyconanoparticles: synthesis, characterization and magnetic properties. J Phys Chem B 110(26):13021–13028PubMedCrossRefGoogle Scholar
  44. Gao A, Lu N, Dai P, Fan C, Wang Y, Li T (2014) Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays. Nanoscale 6(21):13036–13042PubMedCrossRefGoogle Scholar
  45. Garcia AC, Merkoci A (2016) Nanobiosensors in diagnostics. Nano 3:1–26Google Scholar
  46. Gayathri T, Kumar RA, Panigrahi BS, Devanand B (2017) Silica-coated europium-doped gadolinium oxide nanorods for dual-modal imaging of cancer cells. Nano 12(06):1750073CrossRefGoogle Scholar
  47. Geho DH, Jones CD, Petricoin EF, Liotta LA (2006) Nanoparticles: potential biomarker harvesters. Curr Opin Chem Biol 10:56–61PubMedCrossRefGoogle Scholar
  48. Ghaghada KB, Sato AF, Starosolski ZA, Berg J (2016) Computed tomography imaging of solid tumors using a liposomal-iodine contrast agent in companion dogs with naturally occurring cancer. PLoS One 11(3):e0152718PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253PubMedCrossRefPubMedCentralGoogle Scholar
  50. Holzinger M, Goff AL, Cosneir S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:63PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hounsfield GN (1973) Computerized transverse axial scanning (tomography), description of system. Br J Radiol 46(552):1016–1022PubMedCrossRefGoogle Scholar
  52. Huang X, Li S, Schultz JS, Wang Q, Lin Q (2009) A MEMS affinity glucose sensor using a biocompatible glucose-responsive polymer. Sensors Actuators B Chem 140(2):603–609CrossRefGoogle Scholar
  53. Jackson TC, Patani BO, Ekpa DE (2017) Nanotechnology in diagnosis: a review. Adv Nanopart 6:93–102CrossRefGoogle Scholar
  54. Jia F, Liu X, Li L, Mallapragada S, Narasimhan B, Wang Q (2013) Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J Control Release 172(3):1020–1034PubMedCrossRefGoogle Scholar
  55. Jin Y, Wang J, Ke H, Wang S, Dai Z (2013) Graphene oxide modified PLA microcapsules containing gold nanoparticles for ultrasonic/CT bimodal imaging guided photothermal tumor therapy. Biomaterials 34:4794–4802PubMedCrossRefGoogle Scholar
  56. Jin Q, Chen Y, Wang Y, Ji J (2014) Zwitterionic drug nanocarriers: a biomimetic strategy for drug delivery. Colloids Surf B Biointerfaces 124:80–86PubMedCrossRefGoogle Scholar
  57. Junghanns J, Müller RH (2008) Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine 3:295–309PubMedPubMedCentralGoogle Scholar
  58. Kang HK, Seo J, Carlo DD, Choi YK (2003) Planar nanogap capacitor arrays on quartz for optical and dielectric bioassays. In: Proceedings of the micro total analysis systems, Squaw Valley, California, USA. pp 697–700Google Scholar
  59. Ke H, Yue X, Wang J (2014) Gold nanoshelled liquid perfluorocarbon nanocapsules for combined dual modal ultrasound/CT imaging and photothermal therapy of cancer. Small 10:1220–1227PubMedCrossRefGoogle Scholar
  60. Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 6:714–729PubMedCrossRefGoogle Scholar
  61. Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129:7661–7665PubMedCrossRefGoogle Scholar
  62. Kim JH, Yeo WH, Shu Z (2012) Immunosensor towards low-cost, rapid diagnosis of tuberculosis. Lab Chip 12(8):1437–1440PubMedCrossRefGoogle Scholar
  63. Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953–1964CrossRefGoogle Scholar
  64. Kojima C, Umeda Y, Ogawa M, Harada A, Magata Y, Kono K (2010) X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology 21:245104PubMedCrossRefGoogle Scholar
  65. Krishnamurthy V (2010) Ion-channel biosensors-part i: construction, operation, and clinical studies. IEEE Trans Nanotechnol 9(3):303–312CrossRefGoogle Scholar
  66. Krukemeyer MG, Krenn V, Huebner F, Wagner W (2015) History and possible uses of nanomedicine based on nanoparticles and nanotechnological progress. Nanomed Nanotechnol 6:336Google Scholar
  67. Kumar SR, Vijayalakshmi R (2006) Nanotechnology in dentistry. Indian J Dent Res 17:62–69CrossRefGoogle Scholar
  68. Kumvongpin R, Jearanaikool P, Wilailuckana C, Sae-Ung N (2016) High sensitivity, loop-mediated isothermal amplification combined with colorimetric gold-nanoparticle probes for visual detection of high risk human papillomavirus genotypes 16 and 18. J Virol Methods 234:90–95PubMedCrossRefGoogle Scholar
  69. Lawaczeck R, Bauer H, Frenzel T (2016) Magnetic Iron oxide particles coated with carboxydextran for parenteral administration and liver contrasting. Acta Radiol 38:584–597Google Scholar
  70. Lee D, Koo H, Sun IC, Ryu JH (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41(7):2656–2672PubMedCrossRefGoogle Scholar
  71. Li Y, Artés JM, Demir B, Gokce S (2018) Detection and identification of genetic material via single-molecule conductance. Nat Nanotechnol 13(12):1167–1173PubMedCrossRefGoogle Scholar
  72. Liu M, Fréchet JM (1999) Designing dendrimers for drug delivery. Pharm Sci Technol Today 2:393–401PubMedCrossRefGoogle Scholar
  73. Liversidge EM, Liversidge GG, Cooper ER (2003) Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 18:113–120PubMedCrossRefGoogle Scholar
  74. Lu N, Gao A, Dai P (2014) CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing. Small 10(10):2022–2028PubMedCrossRefGoogle Scholar
  75. Lueke J, Moussa WA (2011) MEMS-based power generation techniques for implantable Biosensing applications. Sensors (Basel) 11(2):1433–1460CrossRefGoogle Scholar
  76. Lyberopoulou A, Stathopoulos EP, Gazouli M (2015) Nanodiagnostic and nanotherapeutic molecular platforms for cancer management. J Cancer Res Updat 4:153–162CrossRefGoogle Scholar
  77. Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1):32–41CrossRefGoogle Scholar
  78. Mascini M, Tombelli S (2008) Biosensors for biomarkers in medical diagnostics. Biomarkers 13:637–657PubMedCrossRefGoogle Scholar
  79. Mattrey RF, Scheible FW, Gosink BB, Leopold GR, Long DM, Higgins CB (1982) Perfluoroctylbromide: a liver/spleen-specific and tumorimaging ultrasound contrast material. Radiology 145(3):759–762PubMedCrossRefGoogle Scholar
  80. Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196PubMedCrossRefGoogle Scholar
  81. Miyata K, Christie RJ, Kataoka K (2011) Polymeric micelles for nano-scale drug delivery. React Funct Polym 71:227–234CrossRefGoogle Scholar
  82. Mozafari M (2010) Liposomes: methods and protocols, pharmaceutical nanocarriers, 1st edn. Humana Press, Totowa, pp 29–50CrossRefGoogle Scholar
  83. Müller R, Maaβen S, Weyhers H (1996) Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles. Int J Pharm 138:85–94CrossRefGoogle Scholar
  84. Müller R, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47:3–19PubMedCrossRefGoogle Scholar
  85. Nasimi P, Haidari M (2013) Medical use of nanoparticles: drug delivery and diagnosis diseases. Int J Green Nanotechnol 1:1–5CrossRefGoogle Scholar
  86. Nie L, Liu F, Ma P, Xiao X (2014) Applications of gold nanoparticles in optical biosensors. J Biomed Nanotechnol 10:2700–2721PubMedCrossRefGoogle Scholar
  87. Olbrich C, Bakowsky U, Lehr CM (2001) Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. J Control Release 77(3):345–355PubMedCrossRefGoogle Scholar
  88. Pedersen N, Hansen S, Heydenreich AV, Kristensen HG (2006) Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands. Eur J Pharm Biopharm 62:155–162PubMedCrossRefGoogle Scholar
  89. Peeling RW, Mabey D (2010) Point-of-care tests for diagnosing infections in the developing world. Clin Microbiol Infect 16(8):1062–1069PubMedCrossRefGoogle Scholar
  90. Perez-Campana C, Gomez-Vallejo V, Puigivila M, Martin A, Calvo-Fernandez T, Moya SE, Ziolo RF, Reese T, Llop J (2013) Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles. ACS Nano 7(4):3498–3505PubMedCrossRefGoogle Scholar
  91. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 963961.  https://doi.org/10.1155/2014/963961CrossRefGoogle Scholar
  92. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:316–330.  https://doi.org/10.1002/wnan.1363CrossRefGoogle Scholar
  93. Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer Nature, Singapore. (ISBN 978-3-319-68423-9)Google Scholar
  94. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi: 10.3389/fmicb.2017.01014Google Scholar
  95. Prasad R, Pandey R, Varma A, Barman I (2017b) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H and Janaswamy S (eds.), Natural Polymers for Drug Delivery CAB International, UK, pp 53–70Google Scholar
  96. Prasad R, Jha A, Prasad K (2018) Exploring the realms of nature for nanosynthesis. Springer International Publishing. https://www.springer.com/978-3-319-99570-0
  97. Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discov 3:785–796PubMedCrossRefGoogle Scholar
  98. Rajasundari K, Hamurugu K (2011) Nanotechnology and its application in medical diagnosis. J Basic Pure Appl Chem 1:26–32Google Scholar
  99. Ramesan RM, Sharma CP (2009) OMICS: biomedical perspectives and applications. Expert Rev Med Devices 6:665–676PubMedCrossRefGoogle Scholar
  100. Rawat M, Singh D, Saraf S (2006) Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull 29(9):1790–1798PubMedCrossRefGoogle Scholar
  101. Reimhult E, Höök F (2015) Design of Surface Modifications for nanoscale sensor applications. Sensors 15.  https://doi.org/10.3390/s150101635PubMedCrossRefGoogle Scholar
  102. Roco MC, Harthorn B, Guston D, Shapira P (2017) Innovative and responsible governance of nanotechnology for societal development. In: Nanotechnology research directions for societal needs in 2020, pp 441–488 Springer USAGoogle Scholar
  103. Saeed AA, Sanchez JLA, O’Sullivan CK (2017) DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis. Bioelectrochemistry 118:91–99PubMedCrossRefGoogle Scholar
  104. Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8:1112–1120PubMedCrossRefGoogle Scholar
  105. Savjani KT, Anuradha K, Gajjar AK, Savjani JK (2012) Drug solubility: importance and enhancement techniques. ISRN Pharm 2012:195727PubMedPubMedCentralGoogle Scholar
  106. Seyfer P, Pagenstecher A, Mandic R, Klose KJ, Heverhagen JT (2014) Cancer and inflammation: differentiation by USPIO-enhanced MR imaging. J Magn Reson Imaging 39:665–672PubMedCrossRefGoogle Scholar
  107. Sharma RB, Hashim U (2013) Microfluidic photomask design using CAD software for application in lab-on-chip biomedical nano diagnostics. Adv Mater Res 795:388–392CrossRefGoogle Scholar
  108. Shegokar R, Müller RH (2010) Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm 399:129–139PubMedCrossRefGoogle Scholar
  109. Shehada N, Brönstrup G, Funka K, Christiansen S, Leja M, Haick H (2015) Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath Volatolome. Nano Lett 15(2):1288–1295PubMedCrossRefGoogle Scholar
  110. Shetty NJ, Swati P, David K (2013) Nanorobots: future in dentistry. Saudi Dent J 25(2):49–52PubMedPubMedCentralCrossRefGoogle Scholar
  111. Shilo M, Reuveni T, Motiei M (2012) Nanoparticles as computed tomography contrast agents. Nanomedicine 7(2):257–259PubMedCrossRefGoogle Scholar
  112. Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71:445–462PubMedCrossRefGoogle Scholar
  113. Swierczewska M, Lee S, Chen X (2011) Inorganic nanoparticles for multimodal molecular imaging. Mol Imaging 10(1):3–16PubMedPubMedCentralCrossRefGoogle Scholar
  114. Taguchi M, Ptitsyn A (2014) Nanomaterial-mediated biosensors for monitoring glucose. J Diabetes Sci Technol 8(2):403–411PubMedPubMedCentralCrossRefGoogle Scholar
  115. Takahashi S, Shiraishi T, Miles N, Trock BJ, Kulkarni P, Getzenberg RH (2015) Nanowire analysis of cancer-testis antigens as biomarkers of aggressive prostate cancer. Urology 85(3):704.e1–704.e7CrossRefGoogle Scholar
  116. Tan C, Wang Y, Fan Y (2013) Exploring polymeric micelles for improved delivery of anticancer agents: recent developments in preclinical studies. Pharmaceutics 5:201–219PubMedPubMedCentralCrossRefGoogle Scholar
  117. Teraphongphom N, Chhour P, Eisenbrey JR (2015) Nanoparticle loaded polymeric microbubbles as contrast agents for multimodal imaging. Langmuir 31(43):11858–11867PubMedPubMedCentralCrossRefGoogle Scholar
  118. Thévenot DR, Toth K, Durst RA (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16(1–2):121–131PubMedCrossRefGoogle Scholar
  119. Tian C, Zhu L, Lin F, Boyes SG (2015) Poly(acrylic acid) bridged gadolinium metal-organic framework-gold nanoparticle composites as contrast agents for computed tomography and magnetic resonance bimodal imaging. ACS Appl Mater Interfaces 7:17765–17775PubMedPubMedCentralCrossRefGoogle Scholar
  120. Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–172PubMedPubMedCentralCrossRefGoogle Scholar
  121. Torchilin VP (2012) Multifunctional nanocarriers. Adv Drug Deliv Rev 64:302–315CrossRefGoogle Scholar
  122. Trubetskoy VS, Gazelle GS, Wolf GL, Torchilin VP (1997) Block-copolymer of polyethylene glycol and polylysine as a carrier of organic iodine: design of long-circulating particulate contrast medium for x-ray computed tomography. J Drug Target 4(6):381–388PubMedCrossRefGoogle Scholar
  123. Varshosaz J, Minayian M, Moazen E (2010) Formulation and optimization of solid lipid nanoparticles of buspirone HCl for enhancement of its oral bioavailability. J Liposome Res 20:115–123PubMedCrossRefGoogle Scholar
  124. Wang J, Musameh M, Lin YH (2003) Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J Am Chem Soc 125:2408PubMedCrossRefGoogle Scholar
  125. Warkiani ME, Tay AK, Khoo BL, Xiaofeng X, Han J, Lim CT (2015) Malaria detection using inertial microfluidics. Lab Chip 15(4):1101–1109PubMedCrossRefGoogle Scholar
  126. Warlin D (2013) Superparamagnetic iron oxide nanoparticles for MRI: contrast media pharmaceutical company R&D perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(5):411–422PubMedCrossRefGoogle Scholar
  127. Williams HD, Trevaskis NL, Charman SA, Shanker RM (2013) Strategies to address low drug solubility in discovery and development. Pharmacol Rev 65:315–499PubMedCrossRefGoogle Scholar
  128. Xu C, Mu L, Roes I, Miranda-Nieves I, Nahrendorf D (2011) Nanoparticle-based monitoring of cell therapy. Nanotechnology 22(49):494001PubMedPubMedCentralCrossRefGoogle Scholar
  129. Xu W, Ling P, Zhang T (2013) Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013:340315PubMedPubMedCentralCrossRefGoogle Scholar
  130. Yeh MK, Chang LC, Chiou AHJ (2009) Improving tenoxicam solubility and bioavailability by cosolvent system. AAPS PharmSciTech 10:166–171PubMedPubMedCentralCrossRefGoogle Scholar
  131. Yeo WH, Chung JH, Liu Y, Lee KH (2009) Size-specific concentration of DNA to a nanostructured tip using dielectrophoresis and capillary action. J Phys Chem B 113(31):10849–10858PubMedCrossRefGoogle Scholar
  132. Yogesh ST, Indrajeet DG, Avinash HS (2011) Solubility enhancement techniques: a review on conventional and novel approaches. Int J Pharm Sci Res 2:2501–2513Google Scholar
  133. Yu L, Shi Z, Fang C, Zhang Y, Liu Y (2015) Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk. Biosens Bioelectron 69:307–315PubMedCrossRefGoogle Scholar
  134. Yuen C, Liu QJ (2012) Magnetic field enriched surface enhanced resonance Raman spectroscopy for early malaria diagnosis. J Biomed Opt 17(1):017005PubMedCrossRefGoogle Scholar
  135. Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4(11):826–831PubMedCrossRefGoogle Scholar
  136. Zhang B, Wang K, Si J, Sui M, Shen Y (2014) Charge-reversal polymers for biodelivery. In: Gu Z (ed) Bioinspired and biomimetic polymer systems for drug and gene delivery. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 223–242Google Scholar
  137. Zhang Z, Xia X, Xiang X, Huang F (2018) Quantum dots-ru complex assembling dyads for cancer cell detection and cellular imaging based on hybridization chain reaction. Sensors Actuators B Chem 257:1–8CrossRefGoogle Scholar
  138. Ziegler C (2004) Cantilever-based biosensors. Anal Bioanal Chem 379(7–8):946–959PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abhishek Kumar Mishra
    • 1
  1. 1.Himalayan School of Biosciences, Swami Rama Himalayan UniversityJollygrant, DehradunIndia

Personalised recommendations