Interaction of Microorganisms with Nanomaterials as a Basis for Creation of High-Efficiency Biotechnological Preparations

  • I. K. Kurdish
Part of the Nanotechnology in the Life Sciences book series (NALIS)


When nanoparticles of different types are present in a culture medium, microorganisms in the medium interact with them. This has a significant effect on the physiological and biochemical properties of the microorganisms. In particular, the growth activity, dehydrogenase activity, cellular mobility, synthesis of biologically active compounds, and viability of microorganisms increase through the actions of extreme factors.

We selected high-efficiency strains of the nitrogen-fixing bacteria Azotobacter vinelandii IMV B-7076 and the phosphate-mobilizing bacteria Bacillus subtilis IMV B-7023. It was established that the influence of natural mineral nanoparticles on these strains increases the synthesis of a wide spectrum of biologically active substances: organic acids, amino acids, phytohormones, and compounds of phenolic nature. On the basis of the interaction of A. vinelandii IMV B-7076 and B. subtilis IMV B-7023 with natural mineral nanoparticles, biotechnology for creating a complex bacterial preparation, Azogran, was developed. This preparation is stable during long-term storage; significantly stimulates the growth and development of decorative, flowering, and other plants; protects them from a number of phytopathogens and phytophage species; and increases the yield of technical, grain, and vegetable crops by 16–37%.


Interaction of microorganisms with nanoparticles Physiological and biochemical activity Microbial biotechnologies 


  1. Bashan J, Holguin G (1997) Azospirillum—plant relationships: environmental and рhysiological advances (1990–1996). Can J Microbiol 43(2):103–121CrossRefGoogle Scholar
  2. Begonia MF, Kremer RJ (1994) Chemotaxis of deleterious rhizobacteria to velvetleaf seed and seedlings. FEMS Microbiol Ecol 15(3–4):227–236. Scholar
  3. Bulavenko LV, Bega ZT, Kurdish IK (2000) Phosphorus mobilization from poorly soluble non-organophosphates by some microorganisms. Bull Agric Microbiol (6):55–56Google Scholar
  4. Chobotarov AY (2015) Physiological activity of Azotobacter vinelandii IMV B-7076 and Bacillus subtilis IMV B-7023 in condition of disperse materials activity. PhD thesis. IMV NAS UkraineGoogle Scholar
  5. Chobotarov A, Volkogon M, Voytenko L, Kurdish I (2017a) Accumulation of phytohormones by soil bacteria Azotobacter vinelandii and Bacillus subtilis under the influence of nanomaterials. J Microbiol Biotechnol Food Sci 7(3):271–274. Scholar
  6. Chobotarov AY, Gordienko AS, Kurdish IK (2010a) Influence of natural minerals on growth of Azotobacter vinelandii IMV B-7076. Mikrobiol Z 72(5):27–31Google Scholar
  7. Chobotarov AY, Gordienko AS, Samchuk AI, Kurdish IK (2010b) Influence of silicon dioxide and saponite on growth of Bacillus subtilis ІМV В-7023. Mikrobiol Z 72(4):33–39Google Scholar
  8. Сhobotarov AY, Gordienko AS, Kurdish IK (2013) Growth peculiarities of Bacillus subtilis and streptomycin resistant mutant in the medium with saponite. Mikrobiol Z 75(5):62–66Google Scholar
  9. Chobotarov AY, Skorochod IO, Kurdish IK (2017b) Effect of some nanomaterials and cations on superoxide dismutase activity of Azotobacter vinelandii ІМV В-7076//Theses of reports of ХV congress of the Vinogradskyi Society of Microbiologists of Ukraine. September 11–15, 2017, Odesa: 157Google Scholar
  10. Chobotarov A, Volkogon M, Voytenko L, Kurdish I (2017a) Accumulation of phytohormones by soil bacteria Azotobacter vinelandii and Bacillus subtilis under the influence of nanomaterials. J Microbiol Biotechnol Food Sci 7(3):271–274CrossRefGoogle Scholar
  11. Chuiko NV, Kurdish IK (2004) Chemotactic properties of Bradyrhizobium japonicum in the presence of natural fine-grained minerals. Microbiology 73(3):364–367PubMedCrossRefGoogle Scholar
  12. Chuiko NV, Kurdish IK (2017) The influence of high-dispersity saponite and silicone dioxide on chemotaxis of Azotobacter vinelandii IMV B-7076 and Bacillus subtilis IMV B-7023. Mikrobiol Z 79(3):36–43CrossRefGoogle Scholar
  13. Chuiko NV, Gordienko AS, Kurdish IK (2006) Chemotaxis and growth of Bradyrhizobium japonicum in presence of fine-dispersed silica. Mikrobiol Z 75(1):44–47Google Scholar
  14. Chuiko NV, Bega ZT, Bulavenko LV, Kurdish IK (2010) Influence of bacterial preparation of complex action on decorative plants growth. Microbiol Biotech 2:43–50Google Scholar
  15. Chuiko NV, Gordienko AS, Kurdish IK (2013) Chemotaxis of Azotobacter vinelandii and Bacillus subtilis in mixed culture. Mikrobiol Z 82(2):186–189Google Scholar
  16. Costerton JW, Marrie MJ, Cheng KJ (1985) Phenomena of bacterial adhesion: mechanisms and physiological significance. In: Savage DC, Fletcher M (eds) Bacterial adhesion: mechanism and physiological significance. Plenum Press, London/New York, pp 3–43CrossRefGoogle Scholar
  17. Davies PJ (2004) Plant hormones—biosynthesis, signal transduction, action. Springer, Berlin, p 750Google Scholar
  18. Filomeni G, Rotilio G, Ciriolo R (2002) Cell signalling and the glutathione redox system. Biochem Pharmacol 64(5–6):1057–1064PubMedCrossRefGoogle Scholar
  19. Gerasymenko IO, Kurdish IK (2015) Influence of vermiculite and silicon dioxide on dehydrogenase activity of Bacillus subtilis IMV B-7023 and Azotobacter vinelandii IMV B-7076. Mikrobiol Z 77(1):20–24CrossRefGoogle Scholar
  20. Giron D, Frago E, Glevarec G, Pieterse CMJ, Dicke M (2013) Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence. Funct Ecol 27(3):599–609CrossRefGoogle Scholar
  21. Gordienko AS, Kurdish IK, Krasnobrizhy NY (1990) Effect of clay mineral palygorskite on survivability of bacteria under their dewatering. Mikrobiol Z 52(5):75–78Google Scholar
  22. Gordienko AS, Zbanatskaja IV, Kurdish IK (1993) Change in electrosurface properties of Methylomonas rubra cells at contact interaction with particles of silicon dioxide. Can J Microbiol 39(9):902–905CrossRefGoogle Scholar
  23. He Y, Zeng F, Lian Z, Xu J, Brookes PC (2015) Natural soil mineral nanoparticles are novel sorbents for pentachlorophenol and phenanthrene removal. Environ Pollut 205:43–51PubMedCrossRefGoogle Scholar
  24. Heijnen CE, van Elsas JD, Kuikman PJ, van Veen JD (1988) Dynamics of Rhizobium leguminosarum biovar trifolii introduced in soil: the effect of bentonite clay on predation by protozoa. Soil Biol Biochem 20(4):483–488CrossRefGoogle Scholar
  25. Karunakaran G, Suriyaprabha R, Manivasakan P et al (2012) Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnol:1–8. Scholar
  26. Kiprushkina EI, Kolodyaznaya VS (2014) Dynamics of phenolic compounds content during storage of potatoes treated with biological preparation. Processes and Vehicles of Food Production series. Sci J St. Petersburg National Research University of information Technologies, Mechanics and Optics 1:1–6Google Scholar
  27. Kisten АG, Kurdish IK, Bega ZТ, Tsarenко IY (2006) The effect of several factors on the growth of pure and mixed culture of Azotobacter vinelandii and Bacillus subtilis. Appl Biochem Microbiol 42(3):278–283CrossRefGoogle Scholar
  28. Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions and methods for their quantification. Toxicol Pathol 30(6):620–650PubMedCrossRefGoogle Scholar
  29. Kravchenko LV, Аzarova TS, Leonova-Erko EI et al (2003) Root exudates of tomato plants and their effect on the growth and antifungal activity of Pseudomonas strains. Мicrobiology 72(1):48–53Google Scholar
  30. Kulaeva ON (1973) Cytokinins, their structure and functions. Nauka, Мoscow, p 253Google Scholar
  31. Kurdish IK (2001) Granulated microbial preparation for plant-growing: science and practice. KVITs, Kiev, p 141Google Scholar
  32. Kurdish IK (2010) Introduction of microorganisms in agroecosystems. Naukova Dumka, Kiev, p 253Google Scholar
  33. Kurdish IK, Antonyuk TS (1999) Effect of clayey minerals on viability of some bacteria at high temperatures. Mikrobiol Z 61(3):3–8Google Scholar
  34. Kurdish IK, Bega ZT (2006a) Effect of argillaceous minerals on growth of phosphate-mobilising bacteria Bacillus subtilis. Appl Biochem Microbiol 42(4):388–391CrossRefGoogle Scholar
  35. Kurdish IK, Bega ZT (2006b) Strain of bacteria Azotobacter vinelandii for bacterial fertilizer obtaining for plant-growing. Ukrainian Patent 72856, Bulletin 8Google Scholar
  36. Kurdish IK, Kigel NF (1997) Effect of high-dispersed materials on physiological activity of methanotrophic bacteria. Мikrobiol Z 59(2):29–36. Scholar
  37. Kurdish IK, Roy AO (2003) Strain of bacteria Bacillus subtilis for bacterial fertilizer obtaining for plant-growing. Ukrainian Patent 54923A, Bulletin 3Google Scholar
  38. Kurdish IK, Roy AO (2014) Method for obtaining a free-flowing complex bacterial preparation for plant growing. Ukrainian Patent 106135, Bulletin 14, 20 July 2014Google Scholar
  39. Kurdish IK, Titova LV (2000) Granular preparation of Azotobacter containing clay minerals. Appl Microbial Biochem 36(4):484–487Google Scholar
  40. Kurdish IK, Muchnik FV, Malashenko YR, Dementieva OA (1988) Specific concentration of nutrients as a criterion controlling microorganism cultivation. Mikrobiol Z 50(3):13–16Google Scholar
  41. Kurdish IK, Muchnik FV, Malashenko JR (1990) The mathematical model to control the microbial cultivation process by the specostat principle. In: Blazej A, Ottova A (eds) Progress in biotechnology, vol 6. Elsevier, Amsterdam, pp 175–182Google Scholar
  42. Kurdish IK, Bikhunov VL, Tsimberg EA, Elchits SV, Vygovskaya EL, Chuiko AA (1991a) Effect of dispersed silicon dioxide-aerosol A-300 on the growth of yeast Saccharomyces cerevisiae. Mikrobiol Z 53(2):41–44Google Scholar
  43. Kurdish IK, Krasnobrizhy NY, Gordienko AS (1991b) Method for obtaining dry bacterial preparation. Ukrainian Patent 14654А, Bulletin 5Google Scholar
  44. Kurdish IK, Titova LV, Tsimberg EA, Antipchuk AF, Tantsyurenko EV (1993a) Effect of Aerosil on the growth of Azotobacter chroococcum. Mikrobiol Z 55(1):38–42Google Scholar
  45. Kurdish IK, Kigel NF, Bortnik SF (1993b) Stabilization of physiological activity of methanotroph Methylomonas rubra 15sh under storage. Mikrobiol Z 55(4):37–43Google Scholar
  46. Kurdish IK, Roy AA, Garagulya AD, Kiprianova EA (1999) Survival and antagonistic activity of Pseudomonas aureofaciens UKM B-111 stored in fine materials. Microbiology 68(3):387–391Google Scholar
  47. Kurdish IK, Antonyk TS, Chuiko NV (2001) Influence of environmental factors on the chemotaxis of Bradyrhizobium japonicum. Microbiology 70(1):91–95CrossRefGoogle Scholar
  48. Kurdish ІK, Tserkovniak LS, Tsvey YP, Chernata DМ (2005) Perspectives and introduction problems of microbial preparation in agricenosis. Sci Bull Chernivtsy Univ 252:126–131Google Scholar
  49. Kurdish IK, Bеgа ZТ, Gоrdienko АS, Dyrenko ДI (2008a) The effect of Azotobacter vinelandii on plant seed germination and adhesion of these bacteria to cucumber roots. Appl Biochem Microbiol 45(4):400–404CrossRefGoogle Scholar
  50. Kurdish IK, Chuiko NV, Bulavenko LV, Direnko DI (2008b) Efficiency of the introduction of granular bacterial preparations into the agroecosystem of flowering plants. Collection of the Uman Agrarian University. The basis for the formation of productivity of agricultural crop with intensive cultivation technologies, pp 186–192Google Scholar
  51. Kurdish I, Roy A, Chuiko N, Belogubova O, Bulavenko L, Bega Z, Dyrenko D, Chobotarjov A (2008c) The application of granulated bacterial preparation complex action in a plant-grower. Agroecological J:141–142Google Scholar
  52. Kurdish IK, Chuiko NV, Bega ZT (2010) Chemotactic and adhesive properties of Azotobacter vinelandii and Bacillus subtilis. Appl Biochem Microbiol 46(1):51–56CrossRefGoogle Scholar
  53. Kurdish IK, Roy AA, Skorochod IO, Chobotarov AY, Herasimenko IO (2014) Elaboration of a free-flowing complex bacterial preparation for cereal crops. Nanosize system and nanomaterials: studies in Ukraine. Akademperiodika, Kiev, pp 610–614Google Scholar
  54. Kurdish I, Roy A, Skorochod I, Chobotarov A, Herasimenko I, Plotnikov V, Gylchuk V, Korniychuk A (2015) Free-flowing complex bacterial preparation for crop and efficiency of its use in agroecosystems. J Microbiol Biotechnol Food Sci 4(6):527–531CrossRefGoogle Scholar
  55. Kurdish IK, Меlnykova NM (2011) Influence of clay minerals on growth and nodulation activity of Bradyrhizobium japonicum. Mikrobiol Z 73(4):36–40Google Scholar
  56. Kurdish IK, Тitova LV (2001) Use of high-dispersed materials for culturing and obtaining granular Agrobacterium radiobacter preparation. Appl Biochem Microbiol 37(3):318–321CrossRefGoogle Scholar
  57. Labas YA, Gordeeva AV, Deryabina YI, Deryabin AN, Isakova EP (2010) Regulator role of reactive oxygen species: from bacteria to the man. Successes Mod Biol 130(4):323–335Google Scholar
  58. Long SR (2001) Genes and signals in the Rhizobium–legume symbiosis. Plant Physiol 125:69–72PubMedPubMedCentralCrossRefGoogle Scholar
  59. Marshall KC (1985) Mechanisms of bacterial adhesion at solid–water interfaces. In: Savage DC, Fletcher M (eds) Bacterial adhesion mechanisms and physiological significance. Plenum, New York, pp 133–161CrossRefGoogle Scholar
  60. Mishra VK, Kumar A (2009) Impact of metal nanoparticles on the plant growth promoting rhizobacteria. Dig J Nanomater Biostruct 4(3):587–592Google Scholar
  61. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2017) Microbial diversity and soil functions. Eur J Soil Sci 68(1):12–26CrossRefGoogle Scholar
  62. Niste M, Vidican R, Pop R, Rotar I (2013) Stress factors affecting symbiosis activity and nitrogen fixation by Rhizobium cultured in vitro. ProEnviron Promediu 6:42–45Google Scholar
  63. Ocheretyanko A, Roy A, Skorocod I, Kurdish I (2016) Influence of physical and chemical factors on the accumulation of phenolic compounds nitrogen-fixing bacteria Azotobacter vinelandii IMV B-7076. Acta Velit 3(1):49–55Google Scholar
  64. Pogorelova VV, Bega ZT, Kurdish IK (2012) Interrelations of infusoria with Azotobacter and their influence on plants. Mikrobiol Z 74(5):48–54PubMedGoogle Scholar
  65. Roy АА, Bulavenko LV, Кurdish IK (2001) New strains of soil bacilli mineralizing organic phosphorus compounds. Мikrobiol Z 63(4):9–15Google Scholar
  66. Roy AA, Zaloilo OV, Chernova LS (2005) Antagonistic activity of phosphate-mobilizing bacilli to phytopathogenic fungi and bacteria. Agroecol J (1):50–55Google Scholar
  67. Roy АA, Pasichnyk LА, Tserkovniak LS, Chodos SF, Kurdish IK (2012) Influence of bacteria of Bacillus subtilis on the agent of bacterial cancer of tomatoes. Мikrobiol Z 74(5):74–80Google Scholar
  68. Roy AA, Matselyukh OV, Zubko PD, Varbanets LD, Kurdish IK (2014) Proteolitic activity of phosphorous mobilizing bacteria of Bacillus genus and their influence on some phytophages. Agric Microbiol 20:66–73Google Scholar
  69. Rutter PR, Dazzo FB, Fletcher M et al (1984) In: Marshall KC, Characklis WG, Filip Z, Fletcher M, Hirsch P, Jones GW, Mitchell R, Pethica BA, Rose AH, Calleja GB (eds) Microbial adhesion and aggregation: report of the Dahlem Workshop on Microbial Adhesion and Aggregation Berlin 1984, January 15–20. Springer, Berlin, pp 5–19Google Scholar
  70. Shakirova FM (2001) Non-specific resistance of plants to stress factors and its regulation. Gilem, UfaGoogle Scholar
  71. Shtarkman IN, Gudkov SV, Chernikov AV, Bruskov VI (2008) Formation of hydrogen peroxide and hydroxyl radicals in aqueous solutions of L-amino acids by the action of x-rays and heat. Biophysics 53(1):5–13CrossRefGoogle Scholar
  72. Skorochod IO, Kurdish IK (2013) Influence of nanoparticles of silica and vermiculite on activity of enzymes of antioxidant defense. Міcrobiol Biotechnol 1:59–67Google Scholar
  73. Skorochod IO, Kurdish IK (2014) The low-molecular antioxidants of microorganisms. Міkrobiol Z 76(3):48–59Google Scholar
  74. Skorochod IO, Kurdish IK (2018) Influence of bentonite nanoparticles and nano-SiO2 on total content of phenolic compounds in the cultural medium of bacteria Azotobacter vinelandii IMV B-7076. In: Proceedings of the Ukrainian conference with international participation “Chemistry, Physics and Technology of Surface”, 23–24 May 2018, Kiev, p 151Google Scholar
  75. Skorochod IO, Roy AA, Melentiev AI, Kurdish IK (2013) Influence of bioactive substances of phosphate-mineralizing strains of genus Bacillus on plant seeds affected by oxidative stress. Microbiol Biotechnol (2):41–51Google Scholar
  76. Skorochod IO, Roy AO, Kurdish IK (2016) Influence of silica nanoparticles on antioxidant potential of Bacillus subtilis IMV B-7023. Nanoscale Res Lett 11:139PubMedPubMedCentralCrossRefGoogle Scholar
  77. Skorokhod IO, Tserkovniak LS, Kurdish IK, Plotnikov VV, Gylchuk VG, Korniychuk OV (2012) Influence of granulated bacterial preparation complex action on the growth and yield of barley. Mikrobiol Z 74(3):23–28PubMedGoogle Scholar
  78. Titova LV, Antipchuk AF, Kurdish IK, Skochinskaya NN, Tantsyurenko EV (1994) Effect of high-dispersed materials on physiological activity of Azotobacter bacteria. Мikrobiol Z 56(3):60–65Google Scholar
  79. Tsercovniak LS, Bega ZT, Ostapchuk AN, Kuz’min VE, Kurdish IK (2009a) Production of biologically active substances of indol nature by bacteria of Azotobacter genus. Ukr Biochem J 81(3):122–128Google Scholar
  80. Tsercovniak LS, Roy AA, Kurdish IK (2009b) Synthesis of amino acids of Bacillus subtilis IMV B-7023 in the medium with glicerophosphates. Mikrobiol Z 71(5):18–23Google Scholar
  81. Tserkovniak LS, Kurdish IK (2009) Phosphate-mobilizing bacteria Bacillus subtilis as phenolic producers. Appl Biochem Microbiol 45(3):311–317CrossRefGoogle Scholar
  82. Tsimberg EA, Titova LV, Kurdish IK (1991) Effect of highly-dispersed materials on the growth of Candida yeast. Mikrobiol Z 53(4):55–58Google Scholar
  83. van der Mei HC, van der Belt-Gritter B, Doyle RJ (2001) Cell surface analysis and adhesion of chemically modified streptococci. J Colloid Interface Sci 241(2):327–332CrossRefGoogle Scholar
  84. van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61(2):121–135PubMedPubMedCentralGoogle Scholar
  85. Zehnder AJB, Harms H, Bosma TNP (1996) Proceedings of the International Symposium on Subsurface Microbiology, 15–21 September 1996, Davos, p 42Google Scholar
  86. Zhang ZY, Huang L, Liu F (2017) The properties of clay in soil minerals participles from two ultisols, China. Clays Clay Miner 65(4):273–285CrossRefGoogle Scholar
  87. Zhang ZY, Huang L, Liu F (2018) Transformation of clay minerals in nanoparticles of several zonal soils in China. J Soils Sediments. Scholar
  88. Zubko PD, Kurdish IK (2017) Features of the spatial distribution of bacteria-components of the complex preparation Azogran in the root zone of cucumber. In: Proceedings of the XVth Congress of Vinogradskyi, Society of Microbiologists of Ukraine, 11–15 September 2017, OdessaGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • I. K. Kurdish
    • 1
  1. 1.Department of Microbiological Processes on Solid SurfaceZabolotny Institute of Microbiology and Virology, National Academy Sciences of UkraineKievUkraine

Personalised recommendations