Stress, Spaceflight, and Latent Herpes Virus Reactivation

  • Raymond P. StoweEmail author
  • Duane L. Pierson
  • Satish K. Mehta


The effect of stress on immune responses associated with manned space missions is unknown, but concern of diminished immunity on long missions is problematic. Decreased cellular immunity has been reported in astronauts flying on short- and long-duration missions, but the medical significance is unclear as illnesses in astronauts during spaceflights are uncommon. Opportunistic pathogens such as latent viruses pose a unique hazard to crewmembers because of the ineffectiveness of preflight quarantine periods and decreased immune function. Our research has demonstrated that reactivation of latent herpes viruses serves as a surrogate marker for decreased immunity in astronauts. This chapter provides concrete and most recent evidence that spaceflight results in asymptomatic reactivation of latent herpes viruses, during short- and long-duration space missions to the International Space Station. Furthermore, these changes are believed to result from neuroendocrine and immune changes associated with stressors to which the crew is exposed during spaceflight.


Stress Spaceflight Microgravity Immunity Herpes virus EBV CMV VZV 


  1. Arvin AM (1996) Varicella-zoster virus. Clin Microbiol Rev 9(3):361–381PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arvin AM, Gershon AA (1996) Live attenuated varicella vaccine. Annu Rev Microbiol 50:59–100PubMedCrossRefGoogle Scholar
  3. Asano Y, Nakayama H et al (1977) Protection against varicella in family contacts by immediate inoculation with live varicella vaccine. Pediatrics 59(1):3–7PubMedGoogle Scholar
  4. Black FL, Hierholzer WJ et al (1974) Evidence for persistence of infectious agents in isolated human populations. Am J Epidemiol 100(3):230–250PubMedCrossRefGoogle Scholar
  5. Caillot-Augusseau A, Lafage-Proust MH et al (1998) Bone formation and resorption biological markers in cosmonauts during and after a 180-day space flight (Euromir 95). Clin Chem 44(3):578–585PubMedGoogle Scholar
  6. Carney WP, Hirsch MS (1981) Mechanisms of immunosuppression in cytomegalovirus mononucleosis. II. Virus-monocyte interactions. J Infect Dis 144(1):47–54PubMedCrossRefGoogle Scholar
  7. Cohen JI (2000) Epstein-Barr virus infection. N Engl J Med 343(7):481–492PubMedCrossRefGoogle Scholar
  8. Cohrs RJ, Laguardia JJ et al (2005) Distribution of latent herpes simplex virus type-1 and varicella zoster virus DNA in human trigeminal Ganglia. Virus Genes 31(2):223–227PubMedCrossRefGoogle Scholar
  9. Cohrs RJ, Mehta SK et al (2008) Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. J Med Virol 80(6):1116–1122PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cook SD, Aitken DA et al (1986) Herpes simplex virus in the cornea; an ultrastructural study on viral reactivation. Trans Ophthalmol Soc U K 105(Pt 6):634–641PubMedGoogle Scholar
  11. Crucian B, Johnston S et al (2016) A case of persistent skin rash and rhinitis with immune system dysregulation onboard the International Space Station. J Allergy Clin Immunol Pract 4(4):759–762PubMedPubMedCentralCrossRefGoogle Scholar
  12. De Lorenzo BH, de Oliveira Marchioro L et al (2015) Sleep-deprivation reduces NK cell number and function mediated by β-adrenergic signalling. Psychoneuroendocrinology 57:134–143PubMedCrossRefGoogle Scholar
  13. De Pelsmaeker S, Romero N et al (2018) Herpesvirus evasion of natural killer cells. J Virol 92:e02105–e02117PubMedPubMedCentralCrossRefGoogle Scholar
  14. Dittmer DP, Tamburro K et al (2017) Oral shedding of herpesviruses in HIV-infected patients with varying degrees of immune status. AIDS 31(15):2077–2084PubMedPubMedCentralCrossRefGoogle Scholar
  15. Elenkov IJ, Papanicolaou DA et al (1996) Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: clinical implications. Proc Assoc Am Physicians 108(5):374–381PubMedGoogle Scholar
  16. Fiala M, Payne JE et al (1975) Epidemiology of cytomegalovirus infection after transplantation and immunosuppression. J Infect Dis 132(4):421–433PubMedCrossRefGoogle Scholar
  17. Gazenko OG, Schulzhenko EB et al (1988) Review of basic medical results of the Salyut-7–Soyuz-T 8-month manned flight. Acta Astronaut 17(2):155–160PubMedCrossRefGoogle Scholar
  18. Gilden D, Cohrs RJ et al (2010) Neurological disease produced by varicella zoster virus reactivation without rash. Curr Top Microbiol Immunol 342:243–253PubMedPubMedCentralGoogle Scholar
  19. Glaser R, Kiecolt-Glaser JK et al (1985) Stress, loneliness, and changes in herpesvirus latency. J Behav Med 8(3):249–260PubMedCrossRefGoogle Scholar
  20. Glaser R, Pearson GR et al (1991) Stress-related activation of Epstein-Barr virus. Brain Behav Immun 5(2):219–232PubMedCrossRefGoogle Scholar
  21. Glaser R, Pearson GR et al (1993) Stress and the memory T-cell response to the Epstein-Barr virus in healthy medical students. Health Psychol 12(6):435–442CrossRefGoogle Scholar
  22. Grigoriev AJ et al (1990) Medical results of the fourth prime expedition on the orbital station Mir. In: Proceedings of the 4th European Symposium on Life Sciences Research in Space, Trieste, Italy, 28 May–1 June 1990Google Scholar
  23. Haque T, Crawford DH (1997) PCR amplification is more sensitive than tissue culture methods for Epstein-Barr virus detection in clinical material. J Gen Virol 78(Pt 12):3357–3360PubMedCrossRefGoogle Scholar
  24. Hope-Simpson RE (1965) The nature of Herpes Zoster: a long-term study and a new hypothesis. Proc R Soc Med 58:9–20PubMedPubMedCentralGoogle Scholar
  25. Kasl SV, Evans AS et al (1979) Psychosocial risk factors in the developmental of infectious mononucleosis. Psychosom Med 41(6):445–466PubMedCrossRefGoogle Scholar
  26. Kavaliotis J, Loukou I et al (1998) Outbreak of varicella in a pediatric oncology unit. Med Pediatr Oncol 31(3):166–169PubMedCrossRefGoogle Scholar
  27. Kaye SB, Baker K et al (2000) Human herpesviruses in the cornea. Br J Ophthalmol 84(6):563–571PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kleinschmidt-DeMasters BK, Gilden DH (2001) Varicella-Zoster virus infections of the nervous system: clinical and pathologic correlates. Arch Pathol Lab Med 125(6):770–780PubMedGoogle Scholar
  29. Komanduri KV, Feinberg J et al (2001) Loss of cytomegalovirus-specific CD4+ T cell responses in human immunodeficiency virus type 1-infected patients with high CD4+ T cell counts and recurrent retinitis. J Infect Dis 183(8):1285–1289PubMedCrossRefGoogle Scholar
  30. Konstantinova IV, Rykova MP et al (1993) Immune changes during long-duration missions. J Leukoc Biol 54(3):189–201CrossRefGoogle Scholar
  31. Leach CS (1987) Fluid control mechanisms in weightlessness. Aviat Space Environ Med 58(9 Pt 2):A74–A79PubMedGoogle Scholar
  32. Leach CS, Rambaut PC (1977) Biochemical responses of the Skylab crewmen: an overview. In: Johnston RS, Dietlein LF (eds) Biomedical results from Skylab (NASA SP-377). National Aeronautics and Space Administration, Washington, DC, pp 204–216Google Scholar
  33. Leach CS, Alfrey CP et al (1996) Regulation of body fluid compartments during short-term spaceflight. J Appl Physiol 81(1):105–116PubMedCrossRefGoogle Scholar
  34. Leach-Huntoon CS, Cintron NM (1996) Endocrine system and fluid and electrolyte balance. In: Leach Huntoon CS, Antipov VV, Grigoriev AI (eds) Humans in spaceflight, vol III, 1st edn. American Institute of Aeronautics and Astronautics, Reston, pp 89–104Google Scholar
  35. Lee-Wing MW, Hodge WG et al (1999) The prevalence of herpes family virus DNA in the conjunctiva of patients positive and negative for human immunodeficiency virus using the polymerase chain reaction. Ophthalmology 106(2):350–354PubMedCrossRefGoogle Scholar
  36. Mehta SK, Stowe RP et al (2000) Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J Infect Dis 182(6):1761–1764CrossRefGoogle Scholar
  37. Mehta SK, Kaur I et al (2001) Decreased non-MHC-restricted (CD56+) killer cell cytotoxicity after spaceflight. J Appl Physiol 91(4):1814–1818CrossRefGoogle Scholar
  38. Mehta SK, Cohrs RJ et al (2004) Stress-induced subclinical reactivation of varicella zoster virus in astronauts. J Med Virol 72(1):174–179CrossRefGoogle Scholar
  39. Mehta SK, Tyring SK et al (2008) Varicella-zoster virus in the saliva of patients with herpes zoster. J Infect Dis 197(5):654–657PubMedPubMedCentralCrossRefGoogle Scholar
  40. Mehta SK, Gilden D et al (2012) A case report: PCR-assisted diagnosis of varicella in an adult. Open J Med Microbiol 2:3CrossRefGoogle Scholar
  41. Mehta SK, Tyring SK et al (2013) Rapid and sensitive detection of varicella zoster virus in saliva of patients with herpes zoster. J Virol Methods 193:128–130PubMedPubMedCentralCrossRefGoogle Scholar
  42. Mehta SK, Laudenslager ML et al (2014) Multiple latent viruses reactivate in astronauts during Space Shuttle missions. Brain Behav Immun 41:210–217PubMedPubMedCentralCrossRefGoogle Scholar
  43. Mehta SK, Laudenslager ML et al (2017) Latent virus reactivation in astronauts on the International Space Station. NPJ Microgravity 3:11PubMedPubMedCentralCrossRefGoogle Scholar
  44. Nagel MA, Forghani B et al (2007) The value of detecting anti-VZV IgG antibody in CSF to diagnose VZV vasculopathy. Neurology 68(13):1069–1073PubMedCrossRefGoogle Scholar
  45. Orme HT, Smith AG et al (2007) VZV spinal cord infarction identified by diffusion-weighted MRI (DWI). Neurology 69(4):398–400PubMedCrossRefGoogle Scholar
  46. Payne DA, Mehta SK et al (1999) Incidence of Epstein-Barr virus in astronaut saliva during spaceflight. Aviat Space Environ Med 70(12):1211–1213Google Scholar
  47. Pierson DL, Stowe RP et al (2005) Epstein-Barr virus shedding by astronauts during space flight. Brain Behav Immun 19(3):235–242Google Scholar
  48. Preiksaitis JK, Diaz-Mitoma F et al (1992) Quantitative oropharyngeal Epstein-Barr virus shedding in renal and cardiac transplant recipients: relationship to immunosuppressive therapy, serologic responses, and the risk of posttransplant lymphoproliferative disorder. J Infect Dis 166(5):986–994PubMedCrossRefGoogle Scholar
  49. Ramierz F, Fowell DJ et al (1996) Glucocorticoids promote a TH2 cytokine response by CD4+ T cells in vitro. J Immunol 156(7):2406–2412Google Scholar
  50. Rawson H, Crampin A et al (2001) Deaths from chickenpox in England and Wales 1995–7: analysis of routine mortality data. BMJ 323(7321):1091–1093PubMedPubMedCentralCrossRefGoogle Scholar
  51. Rea D, Delecluse HJ et al (1994) Epstein-Barr virus latent and replicative gene expression in post-transplant lymphoproliferative disorders and AIDS-related non-Hodgkin’s lymphomas. French Study Group of Pathology for HIV-associated Tumors. Ann Oncol 5(Suppl 1):113–116PubMedCrossRefGoogle Scholar
  52. Reijo A, Antti V et al (1983) Endothelial cell loss in herpes zoster keratouveitis. Br J Ophthalmol 67(11):751–754PubMedPubMedCentralCrossRefGoogle Scholar
  53. Rice GP, Schrier RD et al (1984) Cytomegalovirus infects human lymphocytes and monocytes: virus expression is restricted to immediate-early gene products. Proc Natl Acad Sci U S A 81(19):6134–6138PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ricklin ME, Lorscheider J et al (2013) T-cell response against varicella-zoster virus in fingolimod-treated MS patients. Neurology 81:174–181PubMedCrossRefGoogle Scholar
  55. Sawyer MH, Chamberlin CJ et al (1994) Detection of varicella-zoster virus DNA in air samples from hospital rooms. J Infect Dis 169(1):91–94PubMedCrossRefGoogle Scholar
  56. Simmons P, Kaushansky K et al (1990) Mechanisms of cytomegalovirus-mediated myelosuppression: perturbation of stromal cell function versus direct infection of myeloid cells. Proc Natl Acad Sci U S A 87(4):1386–1390PubMedPubMedCentralCrossRefGoogle Scholar
  57. Smith SM, Krauhs JM et al (1997) Regulation of body fluid volume and electrolyte concentrations in spaceflight. Adv Space Biol Med 6:123–165PubMedCrossRefGoogle Scholar
  58. Stein TP (1999) Nutrition and muscle loss in humans during spaceflight. Adv Space Biol Med 7:49–97PubMedCrossRefGoogle Scholar
  59. Stein TP, Schluter MD (1997) Human skeletal muscle protein breakdown during spaceflight. Am J Phys 272(4 Pt 1):E688–E695Google Scholar
  60. Stein TP, Leskiw MJ et al (1999) Protein kinetics during and after long-duration spaceflight on MIR. Am J Phys 276(6 Pt 1):E1014–E1021Google Scholar
  61. Stowe RP, Pierson DL et al (2000) Stress-induced reactivation of Epstein-Barr virus in astronauts. Neuroimmunomodulation 8(2):51–58PubMedCrossRefGoogle Scholar
  62. Stowe RP, Mehta SK et al (2001a) Immune responses and latent herpesvirus reactivation in spaceflight. Aviat Space Environ Med 72(10):884–891PubMedPubMedCentralGoogle Scholar
  63. Stowe RP, Pierson DL et al (2001b) Elevated stress hormone levels relate to Epstein-Barr virus reactivation in astronauts. Psychosom Med 63(6):891–895PubMedCrossRefGoogle Scholar
  64. Stowe RP, Sams CF et al (2003) Effects of mission duration on neuroimmune responses in astronauts. Aviat Space Environ Med 74(12):1281–1284PubMedPubMedCentralGoogle Scholar
  65. Stowe RP, Kozlova EV et al (2011) Unrestricted latent and lytic Epstein-Barr virus gene expression in the peripheral blood of astronauts. J Med Virol 83(6):1071–1077PubMedCrossRefGoogle Scholar
  66. Strewe C, Feuerecker M et al (2012) Effects of parabolic flight and spaceflight on the endocannabinoid system in humans. Rev Neurosci 23(5–6):673–680PubMedPubMedCentralGoogle Scholar
  67. Taylor GR (1993) Immune changes during short-duration missions. J Leukoc Biol 54(3):202–208PubMedCrossRefGoogle Scholar
  68. Taylor GR, Janney RP (1992) In vivo testing confirms a blunting of the human cell-mediated immune mechanism during space flight. J Leukoc Biol 51(2):129–132PubMedPubMedCentralCrossRefGoogle Scholar
  69. Taylor GR, Konstantinova I et al (1997) Changes in the immune system during and after spaceflight. Adv Space Biol Med 6:1–32PubMedPubMedCentralCrossRefGoogle Scholar
  70. Theil D, Paripovic I et al (2003) Dually infected (HSV-1/VZV) single neurons in human trigeminal ganglia. Ann Neurol 54(5):678–682PubMedCrossRefGoogle Scholar
  71. Vorobyev YI, Gazenko OG et al (1986) Preliminary results of medical investigations during 5-month spaceflight aboard Salyut-7–Soyuz-T orbital complex. Kosm Biol Aviakosm Med 20:27–34Google Scholar
  72. White RJ, Averner M (2001) Humans in space. Nature 409(6823):1115–1118PubMedCrossRefGoogle Scholar
  73. Williams DR (2003) The biomedical challenges of space flight. Annu Rev Med 54:245–256PubMedCrossRefGoogle Scholar
  74. Willoughby CE, Baker K et al (2002) Epstein-Barr virus (types 1 and 2) in the tear film in Sjogren’s syndrome and HIV infection. J Med Virol 68(3):378–383PubMedCrossRefGoogle Scholar
  75. Yamamoto S, Shimomura Y et al (1994) Detection of herpes simplex virus DNA in human tear film by the polymerase chain reaction. Am J Ophthalmol 117(2):160–163PubMedCrossRefGoogle Scholar
  76. Yoshikawa T, Ihira M et al (2001) Rapid contamination of the environments with varicella-zoster virus DNA from a patient with herpes zoster. J Med Virol 63(1):64–66PubMedCrossRefGoogle Scholar
  77. Zieg G, Lack G et al (1994) In vivo effects of glucocorticoids on IgE production. J Allergy Clin Immunol 94(2 Pt 1):222–230PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Raymond P. Stowe
    • 1
    Email author
  • Duane L. Pierson
    • 2
  • Satish K. Mehta
    • 2
    • 3
  1. 1.Microgen LaboratoriesLa MarqueUSA
  2. 2.NASA-Johnson Space CentreHoustonUSA
  3. 3.JesTech.HoustonUSA

Personalised recommendations