Non-fluoroscopic Catheter Ablation of Accessory Pathways

  • Santiago Horacio Rivera
  • José Luis Merino Llorens


WPW ablation is one of the most rewarding procedures performed in electrophysiology. Fluoroscopy has been used to guide catheters into the heart chambers, but even in EP labs using fluoroscopy, 3D mapping systems are utilized more and more for accessory pathway (AP) ablation to tag AP location, a feature not possible to achieve using X-ray-only approach. We describe in detail how to approach AP ablation with little or no fluoroscopy in the right and left chambers of the heart.


Ablation Non-fluoro Less-fluoro Zero-fluoro AVRT Accessory pathway AV reentrant tachycardia Fluoroscopy reduction 3D mapping 


  1. 1.
    Anderson R, Ho S. Anatomy of the atrioventricular junctions with regard to ventricular preexcitation. Pacing Clin Electrophysiol. 1997;20:2072–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Anselmino M, Sillano D, Casolati D, et al. A new electrophysiology era: zero fluoroscopy. J Cardiovasc Med (Hagerstown). 2013;14(3):221–7.CrossRefGoogle Scholar
  3. 3.
    Gaita F, Guerra PG, Battaglia A, et al. The dream of near-zero X-rays ablation comes true. Eur Heart J. 2016;37(36):2749–55.PubMedCrossRefGoogle Scholar
  4. 4.
    Casella M, Dello Russo A, Russo E, et al. X-ray exposure in cardiac electrophysiology: a retrospective analysis in 8150 patients over 7 years of activity in a modern, large-volume laboratory. J Am Heart Assoc. 2018;7(11):e008233.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Yang L, Sun G, Chen X, et al. Meta-analysis of zero or near-zero fluoroscopy use during ablation of cardiac arrhythmias. Am J Cardiol. 2016;118(10):1511–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Scaglione M, Ebrille E, Clemente FD, et al. Catheter ablation of atrial fibrillation without radiation exposure using a 3D mapping system. J Atr Fibrillation. 2015;7(5):1167. Scholar
  7. 7.
    Reddy VY, Morales G, Ahmed H, et al. Catheter ablation of atrial fibrillation without the use of fluoroscopy. Heart Rhythm. 2010;7(11):1644–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Anderson RH, Brown NA. The anatomy of the heart revisited. Anat Rec. 1996;246:1–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Anderson RH, Brown NA, Webb S. Development and structure of the atrial septum. Heart. 2002;88:104–10.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Anderson RH, Webb S, Brown NA, et al. Development of the heart. 2. Septation of the atriums and ventricles. Heart. 2003;89:949–58.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Klein G, Hackel D, Gallagher J. Anatomic substrate of impaired conduction over an accessory atrioventricular pathway in the Wolff-Parkinson-White syndrome. Circulation. 1980;61:1249–56.PubMedCrossRefGoogle Scholar
  12. 12.
    Chauvin M, Shah D, Haïssaguerre M, et al. The anatomic basis of connections between the coronary sinus musculature and the left atrium in humans. Circulation. 2000;101:647–52.PubMedCrossRefGoogle Scholar
  13. 13.
    Arruda M, McClelland J, Beckman K, et al. Atrial appendage-ventricular connections: a new variant of preexcitation. Circulation. 1994;90:1–126.CrossRefGoogle Scholar
  14. 14.
    De Chillou C, Rodriguez L, Schlapfer J, et al. Clinical characteristics and electrophysiologic properties of atrioventricular accessory pathways: importance of the accessory pathway location. J Am Coll Cardiol. 1992;20:666–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Jackman WM, Friday KJ, Fitzgerald DM, et al. Localization of left free-wall and posteroseptal accessory atrioventricular pathways by direct recordings of accessory pathway activation. Pacing Clin Electrophysiol. 1989;12:204–14.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang X, McCelland J, Beckman K, et al. Left free-wall accessory pathway ablation from the coronary sinus: unique coronary sinus electrogram pattern. Circulation. 1992;86:I–586.Google Scholar
  17. 17.
    Becker AE, Anderson RH. The Wolff-Parkinson-White syndrome and its anatomical substrates. Anat Rec. 1981;201:169–77.PubMedCrossRefGoogle Scholar
  18. 18.
    Becker A, Anderson R, Durrer D, et al. The anatomical substrates of Wolff-Parkinson-White syndrome: a clinical correlation in seven patients. Circulation. 1978;57:870–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Shinbane J, Lesh M, Stevenson W, et al. Anatomic and electrophysiologic relation between the coronary sinus and mitral annulus: implications for ablation of left-sided accessory pathways. Am Heart J. 1998;135:93–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Sun Y, Arruda M, Otomo K, et al. Coronary sinus-ventricular accessory connections producing posteroseptal and left posterior accessory pathways: incidence and electrophysiological identification. Circulation. 2002;106:1362–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Casella M, Dello Russo A, Pelargonio G, et al. Near zerO fluoroscopic exPosure during catheter ablAtion of supRavenTricular arrhYthmias: the NO-PARTY multicentre randomized trial. Europace. 2016;18(10):1565–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Mahaim I, Winston MR. Recherches d’lanatomic comparee et du pathologic experimentale sur les connexions hautes du faisceau de His-Tawara. Cardiologia. 1941;5:189–260.CrossRefGoogle Scholar
  23. 23.
    Haïssaguerre M, Gaita F, Fischer B, et al. Radiofrequency catheter ablation of left lateral accessory pathways via the coronary sinus. Circulation. 1992;86:1464–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen S, Tai C. Ablation of atrioventricular accessory pathways: current technique—state of the art. Pacing Clin Electrophysiol. 2001;24:1795–809.PubMedCrossRefGoogle Scholar
  25. 25.
    Josephson M. Preexcitation syndromes. In: Josephson M, editor. Clinical cardiac electrophysiology: techniques and interpretations. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2002. p. 322–424.Google Scholar
  26. 26.
    Haïssaguerre M, Gaita F, Marcus FI, et al. Radiofrequency catheter ablation of accessory pathways: a contemporary review. J Cardiovasc Electrophysiol. 1994;5:532–52.PubMedCrossRefGoogle Scholar
  27. 27.
    Katsouras C, Greakas G, Goudevenos J, et al. Localization of accessory pathways by the electrocardiogram: which is the degree of accordance of three algorithms in use? Pacing Clin Electrophysiol. 2004;27:189–93.PubMedCrossRefGoogle Scholar
  28. 28.
    Teo W, Klein G, Guiraudon G, et al. Predictive accuracy of electrophysiologic localization of accessory pathways. J Am Coll Cardiol. 1991;18:527–32.PubMedCrossRefGoogle Scholar
  29. 29.
    Calkins H, Kim Y-N, Schmaltz S, et al. Electrogram criteria for identification of appropriate target sites for radiofrequency catheter ablation of accessory atrioventricular connections. Circulation. 1992;85:565–73.PubMedCrossRefGoogle Scholar
  30. 30.
    Hirao K, Otomo K, Wang X, et al. Para-Hisian pacing: a new method for differentiating retrograde conduction over an accessory AV pathway from conduction over the AV node. Circulation. 1996;94:1027–35.PubMedCrossRefGoogle Scholar
  31. 31.
    Miles WM, Yee R, Klein GJ, et al. The preexcitation index: an aid in determining the mechanism of supraventricular tachycardia and localizing accessory pathways. Circulation. 1986;74:493–500.PubMedCrossRefGoogle Scholar
  32. 32.
    Yang Y, Cheng J, Glatter K, et al. Quantitative effects of functional bundle branch block in patients with atrioventricular reentrant tachycardia. Am J Cardiol. 2000;85:826–31.PubMedCrossRefGoogle Scholar
  33. 33.
    Mahaim I, Benatt A. Nouvelles recherches sur les connexions superieures de la branch gauche du faisceau de His-Tawara avec cloison interventriculaire. Cardiologia. 1938;1:61–76.CrossRefGoogle Scholar
  34. 34.
    Ellenbogen KA, O’Callaghan WG, Colavita PG, et al. Catheter atrioventricular junction ablation for recurrent supraventricular tachycardia with nodoventricular fibers. Am J Cardiol. 1985;55:1227–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Tchou P, Lehmann MH, Jazayeri M, Akhtar M. Atriofascicular connection or a nodoventricular Mahaim fiber? Electrophysiologic elucidation of the pathway and associated reentrant circuit. Circulation. 1988;77:837–48.PubMedCrossRefGoogle Scholar
  36. 36.
    Gillette PC, Garson A Jr, Cooey DA, et al. Prolonged and decremental antegrade conduction properties in right anterior atrioventricular connections: wide QRS antidromic tachycardia of left bundle block pattern without Wolff- Parkinson-White configuration in sinus rhythm. Am Heart J. 1982;103:66.PubMedCrossRefGoogle Scholar
  37. 37.
    Knight BP, Zivin A, Souza J, et al. A technique for the rapid diagnosis of atrial tachycardia in the electrophysiology laboratory. J Am Coll Cardiol. 1999;33:775–81.PubMedCrossRefGoogle Scholar
  38. 38.
    Grogin HR, Lee RJ, Kwasman M, et al. Radiofrequency catheter ablation of atriofascicular and nodoventricular Mahaim tracts. Circulation. 1994;90:272–81.PubMedCrossRefGoogle Scholar
  39. 39.
    Klein GJ, Guiraudon GM, Kerr CR, et al. “Nodoventricular” accessory pathway: evidence for a distinct accessory atrioventricular pathway with atrioventricular node-like properties. J Am Coll Cardiol. 1988;11:1035.PubMedCrossRefGoogle Scholar
  40. 40.
    Kerst G, Weig HJ, Weretka S, et al. Contact force-controlled zero-fluoroscopy catheter ablation of right-sided and left atrial arrhythmia substrates. Heart Rhythm. 2012;9(5):709–14.PubMedCrossRefGoogle Scholar
  41. 41.
    Mah DY, Miyake CY, Sherwin ED, et al. The use of an integrated electroanatomic mapping system and intracardiac echocardiography to reduce radiation exposure in children and young adults undergoing ablation of supraventricular tachycardia. Europace. 2014;16(2):277–83.PubMedCrossRefGoogle Scholar
  42. 42.
    Razminia M, Manankil MF, Eryazici PL, et al. Nonfluoroscopic catheter ablation of cardiac arrhythmias in adults: feasibility, safety, and efficacy. J Cardiovasc Electrophysiol. 2012;23(10):1078–86.PubMedCrossRefGoogle Scholar
  43. 43.
    Kerst G, Parade U, Weig HJ, et al. A novel technique for zero-fluoroscopy catheter ablation used to manage Wolff-Parkinson-White syndrome with a left-sided accessory pathway. Pediatr Cardiol. 2012;33(5):820–3.PubMedCrossRefGoogle Scholar
  44. 44.
    Ferguson JD, Helms A, Mangrum JM, et al. Catheter ablation of atrial fibrillation without fluoroscopy using intracardiac echocardiography and electroanatomic mapping. Circ Arrhythm Electrophysiol. 2009;2(6):611–9.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Brooks AG, Wilson L, Chia NH, et al. Accuracy and clinical outcomes of CT image integration with Carto-Sound compared to electro-anatomical mapping for atrial fibrillation ablation: a randomized controlled study. Int J Cardiol. 2013;168(3):2774–82.PubMedCrossRefGoogle Scholar
  46. 46.
    Merino JL. Tools or toys? The 20-year anniversary of the nonfluoroscopic mapping system dilemma. Rev Esp Cardiol. 2017;70(9):690–3.PubMedCrossRefGoogle Scholar
  47. 47.
    Gallagher JJ, Smith WM, Kasell JH, et al. Role of Mahaim fibers in cardiac arrhythmias in man. Circulation. 1981;64:176–89.PubMedCrossRefGoogle Scholar
  48. 48.
    Kuck K-H, Schluter M. Single-catheter approach to radiofrequency current ablation of left-sided accessory pathways in patients with Wolff-Parkinson-White syndrome. Circulation. 1991;84:2366–75.PubMedCrossRefGoogle Scholar
  49. 49.
    Swartz F, Tracy CM, Fletcher RD. Radiofrequency endocardial catheter ablation of accessory atrioventricular pathway atrial insertion sites. Circulation. 1993;87:487–99.PubMedCrossRefGoogle Scholar
  50. 50.
    Chen X, Borggrefe M, Shenasa M, et al. Characteristics of local electrogram predicting successful transcatheter radiofrequency ablation of left-sided accessory pathways. J Am Coll Cardiol. 1992;20:656–65.PubMedCrossRefGoogle Scholar
  51. 51.
    Hindricks G, Kottkamp H, Chen X, et al. Localization and radiofrequency catheter ablation of left-sided accessory pathways during atrial fibrillation. J Am Coll Cardiol. 1995;25:444–51.PubMedCrossRefGoogle Scholar
  52. 52.
    Bashir Y, Heald SC, Katritsis D, et al. Radiofrequency ablation of accessory atrioventricular pathways: predictive value of local electrogram characteristics for the identification of successful target sites. Br Heart J. 1993;69:315–21.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Cappato R, Schlüter M, Mont L, Kuck K-H. Anatomic, electrical and mechanical factors affecting bipolar endocardial electrogram: impact on catheter ablation of manifest left free-wall accessory pathways. Circulation. 1994;90:884–94.PubMedCrossRefGoogle Scholar
  54. 54.
    Takahashi A, Shah D, Jais P, et al. Specific electrocardiographic features of manifest coronary vein posteroseptal accessory pathways. J Cardiovasc Electrophysiol. 1998;9:1015–25.PubMedCrossRefGoogle Scholar
  55. 55.
    Michaud GF, Tada H, Chough S, et al. Differentiation of atypical atrioventricular node re-entrant tachycardia from orthodromic reciprocating tachycardia using a septal accessory pathway by the response to ventricular pacing. J Am Coll Cardiol. 2001;38:1163–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Jackman WM, Wang X, Friday KJ, et al. Catheter ablation of accessory atrioventricular pathways (Wolff-Parkinson-White syndrome) by radiofrequency current. N Engl J Med. 1991;324:1605–11.PubMedCrossRefGoogle Scholar
  57. 57.
    Calkins H, Yong P, Miller J, et al. Catheter ablation of accessory pathways, atrioventricular nodal reentrant tachycardia, and the atrioventricular junction: final results of a prospective, multicenter clinical trial. Circulation. 1999;99:262–70.PubMedCrossRefGoogle Scholar
  58. 58.
    Xie B, Heald SC, Camm AJ, et al. Successful radiofrequency ablation of accessory pathways with the first energy delivery: the anatomic and electrical characteristics. Eur Heart J. 1996;17:1072–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Langberg JJ, Calkins H, Kim Y-N, et al. Recurrence of conduction in accessory atrioventricular connections after initially successful radiofrequency catheter ablation. J Am Coll Cardiol. 1992;19:1588–92.PubMedCrossRefGoogle Scholar
  60. 60.
    Coppess MA, Altemose GT, Jayachandran JV, et al. Unusual features of intermediate septal bypass tracts. J Cardiovasc Electrophysiol. 2000;11:730–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Álvarez M, Bertomeu-González V, Arcocha MF, et al. Nonfluoroscopic catheter ablation. Results from a prospective multicenter registry. Rev Esp Cardiol (Engl Ed). 2017;70(9):699–705.CrossRefGoogle Scholar
  62. 62.
    Scaglione M, Ebrille E, Caponi D, et al. Zero-fluoroscopy ablation of accessory pathways in children and adolescents: CARTO3 electroanatomic mapping combined with RF and cryoenergy. Pacing Clin Electrophysiol. 2015;38(6):675–81.PubMedCrossRefGoogle Scholar
  63. 63.
    Clark J, Bockoven JR, Lane J, et al. Use of three-dimensional catheter guidance and trans-esophageal echocardiography to eliminate fluoroscopy in catheter ablation of left-sided accessory pathways. Pacing Clin Electrophysiol. 2008;31(3):283–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Huo Y, Christoph M, Forkmann M, et al. Reduction of radiation exposure during atrial fibrillation ablation using a novel fluoroscopy image integrated 3-dimensional electroanatomic mapping system: a prospective, randomized, single-blind, and controlled study. Heart Rhythm. 2015;12(9):1945–55.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Santiago Horacio Rivera
    • 1
  • José Luis Merino Llorens
    • 2
  1. 1.Cardiac Electrophisiology DepartmentBuenos Aires Cardiovascular Institute (ICBA)Buenos AiresArgentina
  2. 2.Cardiology ServiceLa Paz University HospitalMadridSpain

Personalised recommendations