Advertisement

3D Mapping and Reduction in Radiation Exposure

  • Isabelle NaultEmail author
Chapter

Abstract

The field of cardiac electrophysiology has evolved dramatically in the last decades. Catheter ablation is now the standard of care for the treatment of several arrhythmias and the development of technology allows for more and more complex procedures to be realized.

3D mapping is used during many EP procedures for anatomic reconstruction, navigation, activation mapping (integration of the timing of recorded electrograms), and voltage mapping (integration of the amplitude of local signal). Systems used today have evolved to allow precision in localization of catheters and anatomical landmark, reliability and stability of the virtual anatomy, integration of different imaging modalities, and multiple features to facilitate mapping and ablation. This chapter mainly focuses on the reduction in fluoroscopy that can be achieved using 3D mapping systems.

Keywords

Mapping systems Non-fluoro Less-fluoro Zero-fluoro Fluoroscopy reduction 3D mapping 

References

  1. 1.
    Khaykin Y, Oosthuizen R, Zarnett L, Wulffhart ZA, Whaley B, Hill C, et al. CARTO-guided vs. NavX-guided pulmonary vein antrum isolation and pulmonary vein antrum isolation performed without 3-D mapping: effect of the 3-D mapping system on procedure duration and fluoroscopy time. J Interv Card Electrophysiol. 2011;30(3):233–40.CrossRefGoogle Scholar
  2. 2.
    Christoph M, Wunderlich C, Moebius S, Forkmann M, Sitzy J, Salmas J, et al. Fluoroscopy integrated 3D mapping significantly reduces radiation exposure during ablation for a wide spectrum of cardiac arrhythmias. Europace. 2015;17(6):928–37.CrossRefGoogle Scholar
  3. 3.
    Estner HL, Deisenhofer I, Luik A, Ndrepepa G, von Bary C, Zrenner B, et al. Electrical isolation of pulmonary veins in patients with atrial fibrillation: reduction of fluoroscopy exposure and procedure duration by the use of a non-fluoroscopic navigation system (NavX). Europace. 2006;8(8):583–7.CrossRefGoogle Scholar
  4. 4.
    Yang L, Sun G, Chen X, Chen G, Yang S, Guo P, et al. Meta-analysis of zero or near-zero fluoroscopy use during ablation of cardiac arrhythmias. Am J Cardiol. 2016;118(10):1511–8.CrossRefGoogle Scholar
  5. 5.
    Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017;14(10):e275–444.CrossRefGoogle Scholar
  6. 6.
    Prolic Kalinsek T, Jan M, Rupar K, Razen L, Antolic B, Zizek D. Zero-fluoroscopy catheter ablation of concealed left accessory pathway in a pregnant woman. Europace. 2017;19(8):1384.CrossRefGoogle Scholar
  7. 7.
    Karbarz D, Stec PJ, Deutsch K, Sledz J, Stec S. Zero-fluoroscopy catheter ablation of symptomatic pre-excitation from non-coronary cusp during pregnancy. Kardiol Pol. 2017;75(12):1351.CrossRefGoogle Scholar
  8. 8.
    Huang X, Chen Y, Huang Z, He L, Liu S, Deng X, et al. Catheter radiofrequency ablation for arrhythmias under the guidance of the Carto 3 three-dimensional mapping system in an operating room without digital subtraction angiography. Medicine (Baltimore). 2018;97(25):e11044.CrossRefGoogle Scholar
  9. 9.
    Giaccardi M, Mascia G, Paoletti Perini A, Giomi A, Cartei S, Milli M. Long-term outcomes after “Zero X-ray” arrhythmia ablation. J Interv Card Electrophysiol. 2019;54:43–8.CrossRefGoogle Scholar
  10. 10.
    Sommer P, Bertagnolli L, Kircher S, Arya A, Bollmann A, Richter S, et al. Safety profile of near-zero fluoroscopy atrial fibrillation ablation with non-fluoroscopic catheter visualization: experience from 1000 consecutive procedures. Europace. 2018;20:1952–8.CrossRefGoogle Scholar
  11. 11.
    Alvarez M, Bertomeu-Gonzalez V, Arcocha MF, Morina P, Tercedor L, Ferrero de Loma A, et al. Nonfluoroscopic catheter ablation. Results from a prospective multicenter registry. Rev Esp Cardiol (Engl Ed). 2017;70(9):699–705.CrossRefGoogle Scholar
  12. 12.
    Cappato R, Calkins H, Chen SA, Davies W, Iesaka Y, Kalman J, et al. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3(1):32–8.CrossRefGoogle Scholar
  13. 13.
    Hsia HH, Lin D, Sauer WH, Callans DJ, Marchlinski FE. Anatomic characterization of endocardial substrate for hemodynamically stable reentrant ventricular tachycardia: identification of endocardial conducting channels. Heart Rhythm. 2006;3(5):503–12.CrossRefGoogle Scholar
  14. 14.
    D’Amario D, Leone AM, Narducci ML, Smaldone C, Lecis D, Inzani F, et al. Human cardiac progenitor cells with regenerative potential can be isolated and characterized from 3D-electro-anatomic guided endomyocardial biopsies. Int J Cardiol. 2017;241:330–43.CrossRefGoogle Scholar
  15. 15.
    Corrado D, Basso C, Leoni L, Tokajuk B, Bauce B, Frigo G, et al. Three-dimensional electroanatomic voltage mapping increases accuracy of diagnosing arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation. 2005;111(23):3042–50.CrossRefGoogle Scholar
  16. 16.
    Linton NW, Koa-Wing M, Francis DP, Kojodjojo P, Lim PB, Salukhe TV, et al. Cardiac ripple mapping: a novel three-dimensional visualization method for use with electroanatomic mapping of cardiac arrhythmias. Heart Rhythm. 2009;6(12):1754–62.CrossRefGoogle Scholar
  17. 17.
    Luther V, Cortez-Dias N, Carpinteiro L, de Sousa J, Balasubramaniam R, Agarwal S, et al. Ripple mapping: Initial multicenter experience of an intuitive approach to overcoming the limitations of 3D activation mapping. J Cardiovasc Electrophysiol. 2017;28(11):1285–94.CrossRefGoogle Scholar
  18. 18.
    Luther V, Linton NW, Koa-Wing M, Lim PB, Jamil-Copley S, Qureshi N, et al. A prospective study of ripple mapping in atrial tachycardias: a novel approach to interpreting activation in low-voltage areas. Circ Arrhythm Electrophysiol. 2016;9(1):e003582.CrossRefGoogle Scholar
  19. 19.
    Enriquez A, Saenz LC, Rosso R, Silvestry FE, Callans D, Marchlinski FE, et al. Use of intracardiac echocardiography in interventional cardiology: working with the anatomy rather than fighting it. Circulation. 2018;137(21):2278–94.CrossRefGoogle Scholar
  20. 20.
    Khaykin Y, Skanes A, Wulffhart ZA, Gula L, Whaley B, Oosthuizen R, et al. Intracardiac ECHO integration with three dimensional mapping: role in AF ablation. J Atr Fibrillation. 2008;1(2):32.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Moak JP, Sumihara K, Swink J, Hanumanthaiah S, Berul CI. Ablation of the vanishing PVC, facilitated by quantitative morphology-matching software. Pacing Clin Electrophysiol. 2017;40(11):1227–33.CrossRefGoogle Scholar
  22. 22.
    Wu J, Estner H, Luik A, Ucer E, Reents T, Pflaumer A, et al. Automatic 3D mapping of complex fractionated atrial electrograms (CFAE) in patients with paroxysmal and persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2008;19(9):897–903.CrossRefGoogle Scholar
  23. 23.
    Jadidi AS, Arentz T. A decade of CFAE mapping: still seeking more specific tools to identify sources and substrate of persistent atrial fibrillation. Arrhythm Electrophysiol Rev. 2015;4(2):108.CrossRefGoogle Scholar
  24. 24.
    Lehrmann H, Jadidi AS, Minners J, Keyl C, Hochholzer W, Carrapatoso F, et al. Important reduction of the radiation dose for pulmonary vein isolation using a multimodal approach. Europace. 2018;20(2):279–87.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IUCPQQuébecCanada

Personalised recommendations