Advertisement

Ablation of Atrial Flutter with Zero Fluoroscopy Approach

  • Vincenzo RussoEmail author
  • Roberta Bottino
  • Anna Rago
  • Riccardo Proietti
  • Antonio Cassese
  • Carmine Ciardiello
  • Gerardo Nigro
Chapter

Abstract

Catheter ablation of cardiac arrhythmias has conventionally been performed with the aid of fluoroscopy to direct catheter placement. Unfortunately, the use of fluoroscopy comes with radiation risks to the patient as well as to the electrophysiology lab staff. Newly navigation methods are used to help in mapping and ablation, reducing X-ray exposure to zero or near zero. The aim of the present review is to evaluate the safety and efficacy of radiofrequency ablation (RFA) for atrial flutter performed in a fluoroless manner compared with the traditional method using fluoroscopy.

Keywords

Atrial flutter Ablation Fluoroscopy Fluoroless X-ray Safety Efficacy 

References

  1. 1.
    Heidbuchel H, Wittkampf FH, Vano E, Ernst S, Schilling R, Picano E, et al. Practical ways to reduce radiation dose for patients and staff during device implantations and electrophysiological procedures. Europace. 2014;16:946–64.  https://doi.org/10.1093/europace/eut409.CrossRefGoogle Scholar
  2. 2.
    The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 2007;37:1–332.Google Scholar
  3. 3.
    Vano E, Arranz L, Sastre JM, Moro C, Ledo A, Garate MT, et al. Dosimetric and radiation protection considerations based on some cases of patient skin injuries in interventional cardiology. Br J Radiol. 1998;71:510–6.CrossRefGoogle Scholar
  4. 4.
    Rehani MM, Ortiz-Lopez P. Radiation effects in fluoroscopically guided cardiac interventions: keeping them under control. Int J Cardiol. 2006;109:147–51.CrossRefGoogle Scholar
  5. 5.
    Park TH, Eichling JO, Schechtman KB, Bromberg BI, Smith JM, Lindsay BD. Risk of radiation induced skin injuries from arrhythmia ablation procedures. Pacing Clin Electrophysiol. 1996;19(9):1363.CrossRefGoogle Scholar
  6. 6.
    McFadden SL, Mooney RB, Shepherd PH. X-ray dose and associated risks from radiofrequency catheter ablation procedures. Br J Radiol. 2002;75:253–65.CrossRefGoogle Scholar
  7. 7.
    Kovoor P, Ricciardello M, Collins L, Uther JB, Ross DL. Risk to patients from radiation associated with radiofrequency ablation for supraventricular tachycardia. Circulation. 1998;98:1534–40.CrossRefGoogle Scholar
  8. 8.
    Calkins H, Niklason L, Sousa J, el-Atassi R, Langberg J, Morady F. Radiation exposure during radiofrequency catheter ablation of accessory atrioventricular connections. Circulation. 1991;84:2376–82.CrossRefGoogle Scholar
  9. 9.
    Picano E, Vañó E, Rehani MM, Cuocolo A, Mont L, Bodi V, et al. The appropriate and justified use of medical radiation in cardiovascular imaging. A position document of the ESC associations of cardiovascular imaging, percutaneous cardiovascular interventions and electrophysiology. Eur Heart J. 2014;35:665–72.CrossRefGoogle Scholar
  10. 10.
    Lickfett L, Mahesh M, Vasamreddy C, Bradley D, Jayam V, Eldadah Z, et al. Radiation exposure during catheter ablation of atrial fibrillation. Circulation. 2004;110:3003–10.CrossRefGoogle Scholar
  11. 11.
    Rosenthal LS, Mahesh M, Beck TJ, Saul JP, Miller JM, Kay N, et al. Predictors of fluoroscopy time and estimated radiation exposure during radiofrequency catheter ablation procedures. Am J Cardiol. 1998;82:451–8.CrossRefGoogle Scholar
  12. 12.
    Klein LW, Miller DL, Balter S, Laskey W, Haines D, Norbash A, et al. Occupational health hazards in the interventional laboratory: time for a safer environment. Radiology. 2009;250:538–44.CrossRefGoogle Scholar
  13. 13.
    Kottkamp H, Hindricks G. Catheter ablation of atrial flutter. Thorac Cardiovasc Surg. 1999;47(3):357–61.CrossRefGoogle Scholar
  14. 14.
    Lee G, Sanders P, Kalman JM. Catheter ablation of atrial arrhythmias: state of the art. Lancet. 2012;380(9852):1509–19.CrossRefGoogle Scholar
  15. 15.
    Saoudi N, Cosio F, Waldo A, Chen SA, Lesaka Y, Lesh M, et al. Classification of atrial flutter and regular atrial tachycardia according to electrophysiologic mechanism and anatomic bases: a statement from a joint expert group from the Working Group of Arrhythmias of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. J Cardiovasc Electrophysiol. 2001;12:852–66.CrossRefGoogle Scholar
  16. 16.
    Olgin JE, Kalman JM, Saxon LA, Lee RJ, Lesh MD. Mechanism of initiation of atrial flutter in humans: site of unidirectional block and direction of rotation. J Am Coll Cardiol. 1997;29(2):376–84.CrossRefGoogle Scholar
  17. 17.
    Cosio FG, Arribas F, Barbero JM, Kallmeyer C, Goicolea A. Validation of double-spike electrograms as markers of conduction delay or block in atrial flutter. Am J Cardiol. 1988;61(10):775–80.CrossRefGoogle Scholar
  18. 18.
    Kalman JM, Olgin JE, Saxon LA, Fisher WG, Lee RJ, Lesh MD. Activation and entrainment mapping defines the tricuspid annulus as the anterior barrier in typical atrial flutter. Circulation. 1996;94(3):398–406.CrossRefGoogle Scholar
  19. 19.
    Olshansky B, Okumura K, Hess PG, Waldo AL. Demonstration of an area of slow conduction in human atrial flutter. J Am Coll Cardiol. 1990;16(7):1639–48.CrossRefGoogle Scholar
  20. 20.
    Földesi C, Pandozi C, Peichl P. Atrial flutter: arrhythmia circuit and basis for radiofrequency catheter ablation. Ital Heart J. 2003;4:395–403.PubMedGoogle Scholar
  21. 21.
    Yang Y, Cheng J, Bochoeyer A, Hamdan MH, Kowal RC, Page R, et al. Atypical right atrial flutter patterns. Circulation. 2001;103(25):3092–8.CrossRefGoogle Scholar
  22. 22.
    Bochoeyer A, Yang Y, Cheng J, Lee RJ, Keung EC, Marrouche NF, et al. Surface and electrocardiographic characteristics of right and left atrial flutter. Circulation. 2003;108(1):60–6.CrossRefGoogle Scholar
  23. 23.
    Merino JL, Peinado R, Abello M, Gnoatto M, Vasserot MG, Sobrino JA. Superior vena cava flutter: electrophysiology and ablation. J Cardiovasc Electrophysiol. 2005;16(6):568–75.CrossRefGoogle Scholar
  24. 24.
    Kall JG, Rubenstein DS, Kopp DE, Burke MC, Verdino RJ, Lin AC, et al. Atypical atrial flutter originating in the right atrial free wall. Circulation. 2000;101(3):270–9.CrossRefGoogle Scholar
  25. 25.
    Wellens HJ. Contemporary management of atrial flutter. Circulation. 2002;106:649–52.CrossRefGoogle Scholar
  26. 26.
    Jaïs P, Shah DC, Haïssaguerre M, Hocini M, Peng JT, Takahashi A, et al. Mapping and ablation of left atrial flutters. Circulation. 2000;101(25):2928–34.CrossRefGoogle Scholar
  27. 27.
    Ohtani K, Yutani C, Nagata S, Koretsune Y, Hori M, Kamada T. High prevalence of atrial fibrosis in patients with dilated cardiomyopathy. J Am Coll Cardiol. 1995;25:1162–9.CrossRefGoogle Scholar
  28. 28.
    Granada J, Uribe W, Chyou PH, Maassen K, Vierkant R, Smith PN, et al. Incidence and predictors of atrial flutter in the general population. J Am Coll Cardiol. 2000;36(7):2242–6.CrossRefGoogle Scholar
  29. 29.
    Natale A, Newby KH, Pisanó E, Leonelli F, Fanelli R, Potenza D, et al. Prospective randomized comparison of antiarrhythmic therapy versus first-line radiofrequency ablation in patients with atrial flutter. J Am Coll Cardiol. 2000;35(7):1898–904.CrossRefGoogle Scholar
  30. 30.
    Da Costa A, Thévenin J, Roche F, Romeyer-Bouchard C, Abdellaoui L, Messier M, et al. Results from the Loire-Ardèche-Drôme-Isère-Puy-de-Dôme (LADIP) trial on atrial flutter, a multicentric prospective randomized study comparing amiodarone and radiofrequency ablation after the first episode of symptomatic atrial flutter. Circulation. 2006;114(16):1676–81.CrossRefGoogle Scholar
  31. 31.
    Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. 2016 ESC Gguidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37:2893–962.  https://doi.org/10.1093/eurheartj/ehw210.CrossRefPubMedGoogle Scholar
  32. 32.
    Hindricks G, Willems S, Kautzner J, De Chillou C, Wiedemann M, Schepel S, et al. Effect of electroanatomically guided versus conventional catheter ablation of typical atrial flutter on the fluoroscopy time and resource use: a prospective randomized multicenter study. J Cardiovasc Electrophysiol. 2009;20(7):734–40.  https://doi.org/10.1111/j.1540-8167.2009.01439.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Willems S, Weiss C, Ventura R, Rüppel R, Risius T, Hoffmann M, et al. Catheter ablation of atrial flutter guided by electroanatomic mapping (CARTO): a randomized comparison to the conventional approach. J Cardiovasc Electrophysiol. 2000;11(11):1223–30.CrossRefGoogle Scholar
  34. 34.
    Wagner LK, Eifel PJ, Geise RA. Potential biological effects following high X-ray dose interventional procedures. J Vasc Interv Radiol. 1994;5(1):71–84.CrossRefGoogle Scholar
  35. 35.
    Lindsay BD, Eichling JO, Ambos HD, Cain ME. Radiation exposure to patients and medical personnel during radiofrequency catheter ablation for supraventricular tachycardia. Am J Cardiol. 1992;70(2):218–23.CrossRefGoogle Scholar
  36. 36.
    Anselme F, Savouré A, Cribier A, Saoudi N. Catheter ablation of typical atrial flutter: a randomized comparison of 2 methods for determining complete bidirectional isthmus block. Circulation. 2001;103(10):1434–9.CrossRefGoogle Scholar
  37. 37.
    Kottkamp H, Hügl B, Krauss B, Wetzel U, Fleck A, Schuler G, et al. Electromagnetic versus fluoroscopic mapping of the inferior isthmus for ablation of typical atrial flutter: a prospective randomized study. Circulation. 2000;102(17):2082–6.CrossRefGoogle Scholar
  38. 38.
    Da Costa A, Faure E, Thévenin J, Messier M, Bernard S, Abdel K, et al. Effect of isthmus anatomy and ablation catheter on radiofrequency catheter ablation of the cavotricuspid isthmus. Circulation. 2004;110(9):1030–5.CrossRefGoogle Scholar
  39. 39.
    Razminia M, Manankil MF, Eryazici PL, Arrieta-Garcia C, Wang T, D’Silva OJ, et al. Nonfluoroscopic catheter ablation of cardiac arrhythmias in adults: feasibility, safety, and efficacy. J Cardiovasc Electrophysiol. 2012;23:1078–86.CrossRefGoogle Scholar
  40. 40.
    Saliba W, Thomas J. Intracardiac echocardiography during catheter ablation of atrial fibrillation. Europace. 2008;10(Suppl 3):42–7.Google Scholar
  41. 41.
    Gaita F, Guerra PG, Battaglia A, Anselmino M. The dream of near-zero X-rays ablation comes true. Eur Heart J. 2016;37(36):2749–55.CrossRefGoogle Scholar
  42. 42.
    Schmidt B, Chun KR, Tilz RR, Koektuerk B, Ouyang F, Kuck KH. Remote navigation systems in electrophysiology. Europace. 2008;10(Suppl 3):iii57–61.  https://doi.org/10.1093/europace/eun234.CrossRefPubMedGoogle Scholar
  43. 43.
    Vollmann D, Lüthje L, Seegers J, Hasenfuss G, Zabel M. Remote magnetic catheter navigation for cavotricuspid isthmus ablation in patients with common-type atrial flutter. Circ Arrhythm Electrophysiol. 2009;2(6):603–10.  https://doi.org/10.1161/CIRCEP.109.884411.CrossRefPubMedGoogle Scholar
  44. 44.
    Shurrab M, Laish-Farkash A, Lashevsky I, Morriello F, Singh SM, Schilling RJ, et al. Three-dimensional localization versus fluoroscopically only guided ablations: a meta-analysis. Scand Cardiovasc J. 2013;47(4):200–9.  https://doi.org/10.3109/14017431.2013.797099.CrossRefPubMedGoogle Scholar
  45. 45.
    Brunelli M, Doroshenko Y, Baldauf T, Ngoli S, Bastian D, Walaschek J, et al. Zero or near zero fluoroscopy for catheter ablation of supraventricular right atrial tachycardia can be achieved with the use of a three-dimensional mapping system. Europace. 2017;19(Suppl_3):iii191.CrossRefGoogle Scholar
  46. 46.
    Casella M, Dello Russo A, Pelargonio G, Del Greco M, Zingarini G, Piacenti M, et al. Near zerO fluoroscopic exPosure during catheter ablAtion of supraventricular arrhYthmias: the NO-PARTY multicentre randomized trial. Europace. 2016;18(10):1565–72.CrossRefGoogle Scholar
  47. 47.
    Earley MJ, Showkathali R, Alzetani M, Kistler PM, Gupta D, Abrams DJ, et al. Radiofrequency ablation of arrhythmias guided by nonfluoroscopic catheter location: a prospective randomized trial. Eur Heart J. 2006;27:1223–122.CrossRefGoogle Scholar
  48. 48.
    Bulava A, Hanis J, Eisenberger M. Catheter ablation of atrial fibrillation using zero-fluoroscopy technique: a randomized trial. Pacing Clin Electrophysiol. 2015;38:797–806.CrossRefGoogle Scholar
  49. 49.
    Sun X, Xu J, Su H, Fan X, Liu F, An C, et al. Near-zero exposure radiofrequency ablation of paroxysmal supraventricular tachycardia guided by EnSiteNavX mapping. Sci Res Essays. 2011;6:5253–60.CrossRefGoogle Scholar
  50. 50.
    Stec S, Sledz J, Mazij M, Ras M, Ludwik B, Chrabaszcz M, et al. Feasibility of implementation of a “simplified, No-X-Ray, no-lead apron, two-catheter approach” for ablation of supraventricular arrhythmias in children and adults. J Cardiovasc Electrophysiol. 2014;25:866–74.CrossRefGoogle Scholar
  51. 51.
    Giaccardi M, Del Rosso A, Guarnaccia V, Ballo P, Mascia G, Chiodi L, et al. Near-zero xray in arrhythmia ablation using a 3-dimensional electroanatomic mapping system: a multicenter experience. Heart Rhythm. 2016;13:150–6.CrossRefGoogle Scholar
  52. 52.
    Seizer P, Bucher V, Frische C, Heinzmann D, Gramlich M, Muller I, et al. Efficacy and safety of zero-fluoroscopy ablation for supraventricular tachycardias: use of optional contact force measurement for zero fluoroscopy ablation in a clinical routine setting. Herz. 2016;41(3):241–5.  https://doi.org/10.1007/s00059-015-4358-4.CrossRefGoogle Scholar
  53. 53.
    Smith G, Clark JM. Elimination of fluoroscopy use in a pediatric electrophysiology laboratory utilizing three-dimensional mapping. Pacing Clin Electrophysiol. 2007;30:510–8.CrossRefGoogle Scholar
  54. 54.
    Alvarez M, Tercedor L, Almansa I, Ros N, Galdeano RS, Burillo F, et al. Safety and feasibility of catheter ablation for atrioventricular nodal re-entrant tachycardia without fluoroscopic guidance. Heart Rhythm. 2009;6:1714–20.CrossRefGoogle Scholar
  55. 55.
    Yang L, Sun G, Chen X, Chen G, Yang S, Guo P, et al. Meta-analysis of zero or near-zero fluoroscopy use during ablation of cardiac arrhythmias. Am J Cardiol. 2016;118:1511–8.  https://doi.org/10.1016/j.amjcard.2016.08.014.CrossRefGoogle Scholar
  56. 56.
    Stec S, Deutsch KJ, Karbarz D, Klank-Szafran M, Sledz J, Mazij M, et al. Zero-fluoroscopy approaches the gold standard for catheter ablation of regular supraventricular tachycardias—experience beyond 1500 procedures. Eur Heart J. 2017;38(Supplement):179.Google Scholar
  57. 57.
    Bigelow AM, Smith PC, Timberlake DT, McNinch NL, Smith GL, Lane JR, et al. Procedural outcomes of fluoroless catheter ablation outside the traditional catheterization lab. Europace. 2017;19(8):1378–84.  https://doi.org/10.1093/europace/euw207.CrossRefGoogle Scholar
  58. 58.
    Walsh KA, Galvin J, Keaney J, Keelan E, Szeplaki G. Single Centre experience with a zero-fluoroscopic ablation strategy using a novel magnetic field and impedance-based 3D mapping system for supraventricular tachycardia. Europace. 2017;319:295–6.CrossRefGoogle Scholar
  59. 59.
    Razminia M, Willoughby MC, Demo H, Keshmiri H, Wang T, D'Silva OJ, et al. Fluoroless catheter ablation of cardiac arrhythmias: a 5-year experience. Pacing Clin Electrophysiol. 2017;40(4):425–33.  https://doi.org/10.1111/pace.13038.CrossRefGoogle Scholar
  60. 60.
    Macías R, Uribe I, Tercedor L, Jiménez-Jáimez J, Barrio T, Álvarez M. A zero-fluoroscopy approach to cavotricuspid isthmus catheter ablation: comparative analysis of two electroanatomical mapping systems. Pacing Clin Electrophysiol. 2014;37(8):1029–37.  https://doi.org/10.1111/pace.12376.CrossRefPubMedGoogle Scholar
  61. 61.
    Bastian D, Vitali-Serdoz L, Poli S, Walascheck J, Brunelli M, Richter P, et al. Effects of different 3D electro-anatomic mapping systems on fluoroscopy exposure and procedural duration in typical atrial flutter ablation. JACC Clin Electrophysiol. 2017;3(10 Suppl):S3–4.CrossRefGoogle Scholar
  62. 62.
    Schoene K, Rolf S, Schloma D, John S, Arya A, Dinov B, Richter S, Bollmann A, Hindricks G, Sommer P. Ablation of typical atrial flutter using a non-fluoroscopic catheter tracking system vs. conventional fluoroscopy—results from a prospective randomized study. Europace. 2015;17(7):1117–21.  https://doi.org/10.1093/europace/euu398.. Epub 2015 Mar 3CrossRefGoogle Scholar
  63. 63.
    Deutsch K, Śledź J, Mazij M, Ludwik B, Labus M, Karbarz D, et al. Maximum voltage gradient technique for optimization of ablation for typical atrial flutter with zero-fluoroscopy approach. Medicine (Baltimore). 2017;96(25):e6939.  https://doi.org/10.1097/MD.0000000000006939.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vincenzo Russo
    • 1
    Email author
  • Roberta Bottino
    • 1
  • Anna Rago
    • 1
  • Riccardo Proietti
    • 2
  • Antonio Cassese
    • 1
  • Carmine Ciardiello
    • 3
  • Gerardo Nigro
    • 1
  1. 1.Department of CardiologyUniversity of Campania “Luigi Vanvitelli”, Monaldi HospitalNaplesItaly
  2. 2.Department of CardiologyUniversity of PaduaPaudaItaly
  3. 3.HT MedPozzuoli (Naples)Italy

Personalised recommendations