Advertisement

Optical Coherence Tomography for Imaging Dental Caries

  • Daniel FriedEmail author
Chapter

Abstract

Optical Coherence tomography (OCT) is a noninvasive technique that can be used to measure reflectivity within dental hard tissues. Due to the strong reflection at the tooth surfaces, the contrast between sound and demineralized tissues can be enhanced by use of polarization. Polarized sensitive OCT (PS-OCT) can monitor demineralization and remineralization. Clinical studies have indicated that OCT was able to demonstrated penetration into DEJ more reliably that radiographs in questionable occlusal caries. In root caries, the system was able to discriminate sound dentin from demineralized dentin, assess cementum thickness and determine lesion severity by using shrinkage of dentin as a surrogate for demineralization. The system has also proven beneficial for assessment of caries underneath restorations and sealants.

Keywords

Optical coherence tomography Polarization sensitivity Caries diagnosis Lesion activity 

References

  1. 1.
    Bouma BE, Tearney GJ. Handbook of optical coherence tomography. New York: Marcel Dekker; 2002.Google Scholar
  2. 2.
    Colston B, Everett M, Da Silva L, Otis L, Stroeve P, Nathel H. Imaging of hard and soft tissue structure in the oral cavity by optical coherence tomography. Appl Opt. 1998;37(19):3582–5.CrossRefGoogle Scholar
  3. 3.
    Feldchtein FI, Gelikonov GV, Gelikonov VM, Iksanov RR, Kuranov RV, Sergeev AM, et al. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express. 1998;3(3):239–51.CrossRefGoogle Scholar
  4. 4.
    Amaechi BT, Higham SM, Podoleanu AG, Rodgers JA, Jackson DA. Use of optical coherence tomography for assessment of dental caries. J Oral Rehabil. 2001;28(12):1092–3.CrossRefGoogle Scholar
  5. 5.
    Sowa MG, Popescu DP, Friesen JR, Hewko MD, Choo-Smith LP. A comparison of methods using optical coherence tomography to detect demineralized regions in teeth. J Biophotonics. 2011;4(11–12):814–23.CrossRefGoogle Scholar
  6. 6.
    Espigares J, Sadr A, Hamba H, Shimada Y, Otsuki M, Tagami J, et al. Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography. J Med Imaging. 2015;2(1):014001.CrossRefGoogle Scholar
  7. 7.
    Baumgartner A, Dicht S, Hitzenberger CK, Sattmann H, Robi B, Moritz A, et al. Polarization-sensitive optical coherence tomography of dental structures. Caries Res. 2000;34:59–69.CrossRefGoogle Scholar
  8. 8.
    Fried D, Xie J, Shafi S, Featherstone JDB, Breunig T, Lee CQ. Early detection of dental caries and lesion progression with polarization sensitive optical coherence tomography. J Biomed Opt. 2002;7(4):618–27.CrossRefGoogle Scholar
  9. 9.
    Jones RS, Staninec M, Fried D. Imaging artificial caries under composite sealants and restorations. J Biomed Opt. 2004;9(6):1297–304.CrossRefGoogle Scholar
  10. 10.
    Jones RS, Darling CL, Featherstone JD, Fried D. Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography. Caries Res. 2006;40(2):81–9.CrossRefGoogle Scholar
  11. 11.
    Chong SL, Darling CL, Fried D. Nondestructive measurement of the inhibition of demineralization on smooth surfaces using polarization-sensitive optical coherence tomography. Lasers Surg Med. 2007;39(5):422–7.CrossRefGoogle Scholar
  12. 12.
    Hirasuna K, Fried D, Darling CL. Near-IR imaging of developmental defects in dental enamel. J Biomed Opt. 2008;13(4):044011.CrossRefGoogle Scholar
  13. 13.
    Chan KH, Chan AC, Fried WA, Simon JC, Darling CL, Fried D. Use of 2D images of depth and integrated reflectivity to represent the severity of demineralization in cross-polarization optical coherence tomography. J Biophotonics. 2015;8(1–2):36–45.CrossRefGoogle Scholar
  14. 14.
    Lee RC, Kang H, Darling CL, Fried D. Automated assessment of the remineralization of artificial enamel lesions with polarization-sensitive optical coherence tomography. Biomed Opt Express. 2014;5(9):2950–62.CrossRefGoogle Scholar
  15. 15.
    Jones RS, Fried D. Remineralization of enamel caries can decrease optical reflectivity. J Dent Res. 2006;85(9):804–8.CrossRefGoogle Scholar
  16. 16.
    Kang H, Darling CL, Fried D. Nondestructive monitoring of the repair of enamel artificial lesions by an acidic remineralization model using polarization-sensitive optical coherence tomography. Dent Mater. 2012;28(5):488–94.CrossRefGoogle Scholar
  17. 17.
    Ngaotheppitak P, Darling CL, Fried D. Measurement of the severity of natural smooth surface (interproximal) caries lesions with polarization sensitive optical coherence tomography. Lasers Surg Med. 2005;37(1):78–88.CrossRefGoogle Scholar
  18. 18.
    Le MH, Darling CL, Fried D. Automated analysis of lesion depth and integrated reflectivity in PS-OCT scans of tooth demineralization. Lasers Surg Med. 2010;42(1):62–8.CrossRefGoogle Scholar
  19. 19.
    Kang H, Jiao JJ, Chulsung L, Le MH, Darling CL, Fried DL. Nondestructive assessment of early tooth demineralization using cross-polarization optical coherence tomography. IEEE J Sel Top Quantum Electron. 2010;16(4):870–6.CrossRefGoogle Scholar
  20. 20.
    Louie T, Lee C, Hsu D, Hirasuna K, Manesh S, Staninec M, et al. Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography. Lasers Surg Med. 2010;42:738–45.CrossRefGoogle Scholar
  21. 21.
    Nee A, Chan K, Kang H, Staninec M, Darling CL, Fried D. Longitudinal monitoring of demineralization peripheral to orthodontic brackets using cross polarization optical coherence tomography. J Dent. 2014;42(5):547–55.CrossRefGoogle Scholar
  22. 22.
    Chan KH, Tom H, Lee RC, Kang H, Simon JC, Staninec M, et al. Clinical monitoring of smooth surface enamel lesions using CP-OCT during nonsurgical intervention. Lasers Surg Med. 2016;48(10):915–23.CrossRefGoogle Scholar
  23. 23.
    Darling CL, Huynh GD, Fried D. Light scattering properties of natural and artificially demineralized dental enamel at 1310-nm. J Biomed Opt. 2006;11(3):34023.CrossRefGoogle Scholar
  24. 24.
    Staninec M, Douglas SM, Darling CL, Chan K, Kang H, Lee RC, et al. Nondestructive clinical assessment of occlusal caries lesions using near-IR imaging methods. Lasers Surg Med. 2011;43(10):951–9.CrossRefGoogle Scholar
  25. 25.
    Kang H, Darling CL, Fried D. Use of an optical clearing agent to enhance the visibility of subsurface structures and lesions from tooth occlusal surfaces. J Biomed Opt. 2016;21(8):081206.CrossRefGoogle Scholar
  26. 26.
    Tuchin VV. Optical clearing of tissues and blood. Bellingham, WA: SPIE; 2006.Google Scholar
  27. 27.
    Jones RS, Fried D, editors. The effect of high index liquids on PS-OCT imaging of dental caries. Lasers in dentistry XI. San, Jose, CA: SPIE; 2005.Google Scholar
  28. 28.
    Amaechi BT, Podoleanu AG, Komarov G, Higham SM, Jackson DA. Quantification of root caries using optical coherence tomography and microradiography: a correlational study. Oral Health Prev Dent. 2004;2(4):377–82.PubMedGoogle Scholar
  29. 29.
    Lee C, Darling C, Fried D. Polarization sensitive optical coherence tomographic imaging of artificial demineralization on exposed surfaces of tooth roots. Dent Mater. 2009;25(6):721–8.CrossRefGoogle Scholar
  30. 30.
    Manesh SK, Darling CL, Fried D. Nondestructive assessment of dentin demineralization using polarization-sensitive optical coherence tomography after exposure to fluoride and laser irradiation. J Biomed Mater Res B Appl Biomater. 2009;90(2):802–12.CrossRefGoogle Scholar
  31. 31.
    Manesh SK, Darling CL, Fried D. Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin. J Biomed Opt. 2009;14(4):044002.CrossRefGoogle Scholar
  32. 32.
    Otis LL, Al-Sadhan RI, Meiers J, Redford-Badwal D. Identification of occlusal sealants using optical coherence tomography. J Clin Dent. 2000;14(1):7–10.Google Scholar
  33. 33.
    Lenton P, Rudney J, Chen R, Fok A, Aparicio C, Jones RS. Imaging in vivo secondary caries and ex vivo dental biofilms using cross-polarization optical coherence tomography. Dent Mater. 2012;28(7):792–800.CrossRefGoogle Scholar
  34. 34.
    Holtzman JS, Osann K, Pharar J, Lee K, Ahn YC, Tucker T, et al. Ability of optical coherence tomography to detect caries beneath commonly used dental sealants. Lasers Surg Med. 2010;42(8):752–9.CrossRefGoogle Scholar
  35. 35.
    Tom H, Simon JC, Chan KH, Darling CL, Fried D. Near-infrared imaging of demineralization under sealants. J Biomed Opt. 2014;19(7):77003.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental SciencesUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations