Near-Infrared Light Transillumination

  • Jan KühnischEmail author


Near-infrared light transillumination (NILT) uses near-infrared light to visualize enamel and dentin caries lesions in molars and premolars. An intraoral camera emits near-infrared light by two light emission windows, and the image of the transilluminated tooth is captured with a CCD sensor over the occlusal surface. The altered structure of demineralized enamel with larger numbers of pores and interprismatic water content causes an increase in light scattering and absorption and therefore appears less transparent than sound enamel. The strength of the method is in the early detection of enamel lesions on proximal sites, it is possible to describe the extension of the lesion much more precisely in relation to the dentin-enamel junction. The method can also be used for occlusal caries detection.


Caries detection Caries diagnostics Caries assessment Enamel caries Dentin caries Interproximal caries Proximal caries Occlusal caries Near-infrared light transillumination DIAGNOcam 


  1. 1.
    Hopcraft MS, Morgan MV. Comparison of radiographic and clinical diagnosis of approximal and occlusal dental caries in a young adult population. Community Dent Oral Epidemiol. 2005;33:212–8.CrossRefGoogle Scholar
  2. 2.
    Poorterman JH, Aartman IH, Kieft JA, Kalsbeek H. Value of bite-wing radiographs in a clinical epidemiological study and their effect on the DMFS index. Caries Res. 2000;34:159–63.CrossRefGoogle Scholar
  3. 3.
    Poorterman JH, Aartman IH, Kalsbeek H. Underestimation of the prevalence of approximal caries and inadequate restorations in a clinical epidemiological study. Community Dent Oral Epidemiol. 1999;27:331–7.CrossRefGoogle Scholar
  4. 4.
    Mejàre I, Källest l C, Stenlund H. Incidence and progression of approximal caries from 11 to 22 years of age in Sweden: a prospective radiographic study. Caries Res. 1999;33:93–100.CrossRefGoogle Scholar
  5. 5.
    Mejàre I, Källestål C, Stenlund H, Johansson H. Caries development from 11 to 22 years of age: a prospective radiographic study. Prevalence and distribution. Caries Res. 1998;32:10–6.CrossRefGoogle Scholar
  6. 6.
    Kidd EA, Pitts NB. A reappraisal of the value of the bitewing radiograph in the diagnosis of posterior approximal caries. Br Dent J. 1990;169:195–200.CrossRefGoogle Scholar
  7. 7.
    American Dental Association, Council on Scientific Affairs and U.S. Food and Drug Administration. Dental radiographic examinations: recommendations for patient selection and limiting radiation exposure. 2012. Accessed 15 May 2017.
  8. 8.
    European Commission. Radiation protection 136. European guidelines on radiation protection in dental radiology. The safe use of radiographs in dental practice. Luxembourg: Office for Official Publications of the European Communities; 2004.Google Scholar
  9. 9.
    Espelid I, Mejare I, Weerheijm K. EAPD guidelines for use of radiographs in children. Eur J Paediatr Dent. 2003;4:40–8.PubMedGoogle Scholar
  10. 10.
    Söchtig F, Hickel R, Kühnisch J. Caries detection and diagnostics with near-infrared light transillumination: clinical experiences. Quintessence Int. 2014;45:531–8.PubMedGoogle Scholar
  11. 11.
    Schneiderman A, Elbaum M, Shultz T, Keem S, Greenebaum M, Driller J. Assessment of dental caries with Digital Imaging Fiber-Optic Transillumination (DIFOTI): in vitro study. Caries Res. 1997;31:103–10.CrossRefGoogle Scholar
  12. 12.
    Chung S, Fried D, Staninec M, Darling CL. Near infrared imaging of teeth at wavelengths between 1200 and 1600 nm. Proc SPIE Int Soc Photo Opt Eng. 2011;7884:78840X.Google Scholar
  13. 13.
    Staninec M, Lee C, Darling CL, Fried D. In vivo near-IR imaging of approximal dental decay at 1.310 nm. Lasers Surg Med. 2010;42:292–8.CrossRefGoogle Scholar
  14. 14.
    Jones GC, Jones RS, Fried D. Transillumination of interproximal caries lesions with 830-nm light. Proc SPIE 5313, Lasers in Dentistry X. 2004;17.Google Scholar
  15. 15.
    Jones R, Huynh G, Jones G, Fried D. Near-infrared transillumination at 1310-nm for the imaging of early dental decay. Opt Express. 2003;11:2259–65.CrossRefGoogle Scholar
  16. 16.
    Fried D, Glena RE, Featherstone JD, Seka W. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths. Appl Opt. 1995;34:1278–85.CrossRefGoogle Scholar
  17. 17.
    Hall A, Girkin JM. A review of potential new diagnostic modalities for caries lesions. J Dent Res. 2004;83(Spec Issue No C):C89–94.Google Scholar
  18. 18.
    Kühnisch J, Söchtig F, Pitchika V, Laubender R, Neuhaus KW, Lussi A, Hickel R. In vivo validation of near-infrared light transillumination for interproximal dentin caries detection. Clin Oral Investig. 2016;20:821–9.CrossRefGoogle Scholar
  19. 19.
    Pitts NB. Detection, assessment, diagnosis and monitoring of caries. Monographs in oral science, vol. 21. Basel: Karger; 2009.CrossRefGoogle Scholar
  20. 20.
    Kühnisch J, Bücher K, Henschel V, Albrecht A, Garcia-Godoy F, Mansmann U, Hickel R, Heinrich-Weltzien R. Diagnostic performance of the universal visual scoring system (UniViSS) on occlusal surfaces. Clin Oral Investig. 2011;15:215–23.CrossRefGoogle Scholar
  21. 21.
    Kühnisch J, Goddon I, Berger S, Senkel H, Bücher K, Oehme T, Hickel R, Heinrich-Weltzien R. Development, methodology and potential of the new universal visual scoring system (UniViSS) for caries detection and diagnosis. Int J Environ Res Public Health. 2009;6:2500–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Conservative Dentistry and PeriodontologyUniversity Hospital, Ludwig-Maximilian-University of MunichMunichGermany

Personalised recommendations