A Review of Factors Affecting Thermal Conductivity and Societal Applications of PPS Matrix Nanocomposites

  • Manoj BhalwankarEmail author
  • Sachin Mastud
  • Sandesh Jadkar
Conference paper


The objective of this review paper is to analyze the various factors affecting the TC of PNC such as polymer matrix-chain structure and crystallinity, nanofillers type and wt%, surface modification of nanofillers, matrix-nanofiller Kapitza resistance, interface properties, the effect of processing have been discussed at length. The TC improvement case studies of PPS-CNT, PPS-mBN/nBN have been explained. The often neglected role of the polymer matrix in TC improvement has been elaborated. As per Deby’s equation, to maximisze phonon free mean path, the establishment of 3 D phonon-electron thermal network is crucial for the improvement of TC. To maximize the TC and minimize processing problems of PNC due to higher filler loadings, the wt% of fillers should be optimized by formation of segregated structures of PNC is vital as fillers lie along interface of matrix rather than random dispersion.PPS matrix and a range of nanofillers have been analyzed for a combination to form a PNC aimed to improve TC.


Thermal conductivity Polyphenylene sulfide Polymer nanocomposite Nanofillers 



Aluminium Oxide


Aluminium Nitride


Carbon NanoTube


Carbon Nanotube


Coefficient of Thermal Expansion


Digital Scanning Calorimeter


Graphene Oxide


High Density Poly Ethylene


Multi-Walled Carbon Nanotube


Nano Boron Nitride


Polymer Nanocomposites


Polyphenylene sulfide


Single Walled Cabon Nanotube


Thermal Conductivity


Thermi Gravimetric Analysis


Ultra High Molecular Weight Poly Ethylene


Scanning Electron Microscope


Transmission Electron Microscope


  1. 1.
    Silvestre C, Di Pace E, Napolitano R, Pirozzi B, Cesario G (2001) Crystallization, morphology, and thermal behavior of poly(p-phenylene sulfide). J Polym Sci Polym Phys 39(4):415–424CrossRefGoogle Scholar
  2. 2.
    Rahate AS, Nemade KR, Waghuley SA (2013) Polyphenylene sulfide (PPS): state of the art and applications. Rev Chem Eng 29(6):471–489CrossRefGoogle Scholar
  3. 3.
    Moore AL, Shi L (2014) Emerging challenges and materials for thermal management of electronics. Mater Today 17:163–174CrossRefGoogle Scholar
  4. 4.
    Tong XC (2016) Advanced materials for thermal management of electronic packaging. Springer, New York. 616 pp. Foster I, Kesselman C (1999) The grid: blueprint for a new computing infrastructure. Morgan Kaufmann, San FranciscoGoogle Scholar
  5. 5.
    Han ZD, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944CrossRefGoogle Scholar
  6. 6.
    Du F, Guthy C, Kashiwagi T, Fisher JE, Winey KI (2006) An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity. J Polym Sci B Polym Phys 44(10):1513–1519CrossRefGoogle Scholar
  7. 7.
    Mu M, Walker AM, Torkelson JM, Winey KI (2008) Cellular structures of carbon nanotubes in a polymer matrix improve properties relative to composites with dispersed nanotubes. Polymer 49(5):1332–1337CrossRefGoogle Scholar
  8. 8.
    Jurewicz I, Worajittiphon P, King AAK, Sellin PJ, Keddie JL, Dalton AB (2011) Locking carbon nanotubes in confined lattice geometries – a route to low percolation in conducting composites. J Phys Chem B 115(20):6395–6400CrossRefGoogle Scholar
  9. 9.
    Pang H, Yan D-X, Bao Y, Chen J-B, Chen C, Li Z-M (2012) Super-tough conducting carbon nanotube/ultrahigh-molecular-weight polyethylene composites with segregated and double-percolated structure. J Mater Chem 22:23568–23575CrossRefGoogle Scholar
  10. 10.
    Lee T-W, Jeong YG (2014) Enhanced electrical conductivity, mechanical modulus, and thermal stability of immiscible polylactide/polypropylene blends by the selective localization of multi-walled carbon nanotubes. Compos Sci Technol 103:78–84CrossRefGoogle Scholar
  11. 11.
    Shen X, Wang ZY, Wu Y, Liu X, He YB, Kim J (2016) Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett 16(6):3585–3593CrossRefGoogle Scholar
  12. 12.
    Song N, Yang JW, Ding P, Tang SF, Shi LY (2015) Effect of polymer modifier chain length on thermal conductive property of polyamide 6/graphene nanocomposites. Compos A Appl Sci Manuf 73:232–241CrossRefGoogle Scholar
  13. 13.
    Song N, Jiao DJ, Ding P, Cui SQ, Tang SF, Shi LY (2015) Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets. J Mater Chem C 4(2):305–314CrossRefGoogle Scholar
  14. 14.
    Gu JW, Lv ZY, Wu YL, Guo YQ, Tian LD, Qiu H, Li WZ, Zhang QY (2017) Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method. Compos A Appl Sci Manuf 94:209–216CrossRefGoogle Scholar
  15. 15.
    Wu GL, Chen YH, Wang ZD, Wang KK, Feng AL (2017) In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties. J Mater Sci Mater Electron 28(1):576–581CrossRefGoogle Scholar
  16. 16.
    Zhou WY, Wang ZJ, Dong LN, Sui XZ, Chen QG (2015) Dielectric properties and thermal conductivity of PVDF reinforced with three types of Zn particles. Compos A Appl Sci 79:183–191. (b). Zhou WY, Gong Y, Tu LT, Xu L, Zhao W, Cai JT, Zhang YT, Zhou AN (2017) Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene fluoride) composites. J. Alloys Compd 693:1–8CrossRefGoogle Scholar
  17. 17.
    Huang JR, Zhu YT, Xu LN, Chen JW, Jiang W, Nie XA (2016) Massive enhancement in the thermal conductivity of polymer composites by trapping graphene at the interface of a polymer blend. Compos Sci Technol 129:160–165CrossRefGoogle Scholar
  18. 18.
    Gu JW, Xu S, Zhuang Q, Tang YS, Kong J (2017) Hyperbranched polyborosilazane and boron nitride modified cyanate ester composite with low dielectric loss and desirable thermal conductivity. IEEE Trans Dielectr Electr Insul 24(2):784–790. (b). Gu JW, Zhang QY, Tang YS, Zhang JP, Kong J, Dang J, Zhang HP, Wang XQ (2008) Studies on the preparation and effect of the mechanical properties of titanate coupling reagent modified _-SiC whisker filled celluloid nano-composites. Surf Coat Technol 202:2891–2896CrossRefGoogle Scholar
  19. 19.
    Wu GL, Wang YQ, Wang KK, Feng AL (2016) The effect of modified AlN on the thermal conductivity, mechanical and thermal properties of AlN/polystyrene composites. RSC Adv 6(104):102542–102548CrossRefGoogle Scholar
  20. 20.
    Zha JW, Zhu TX, Wu YH, Wang SJ, Li RKY, Dang ZM (2015) Tuning of thermal and dielectric properties for epoxy composites filled with electrospun alumina fibers and graphene nanoplatelets through hybridization. J Mater Chem C 3(27):7195–7202. (b). Kong J, Ning RC, Tang YS (2006) Study on modification of epoxy resins with acrylate liquid rubber containing pendant epoxy groups. J Mater Sci 41:1639–1641CrossRefGoogle Scholar
  21. 21.
    Zhu BL, Wang J, Zheng H, Ma J, Wu J, Gan ZH, Liu J (2017) Thermal conductivity and dielectric properties of immiscible LDPE/epoxy blend filled with hybrid filler consisting of HGM and nitride particle. J Alloys Compd 701:499–507CrossRefGoogle Scholar
  22. 22.
    Han ZD, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36(7):914–944CrossRefGoogle Scholar
  23. 23.
    Hassan ED, Monireh N (2012) Thermal conductivity of nanoparticles filled polymers. INTECH Open Access Publisher, RijekaGoogle Scholar
  24. 24.
    Huang XY, Jiang PK, Tanaka T (2011) A review of dielectric polymer composites with high thermal conductivity. IEEE Electr Insul Mag 27:8–16CrossRefGoogle Scholar
  25. 25.
    Anderson DR (1966) Thermal conductivity of polymers. Chem Rev 66:677–690CrossRefGoogle Scholar
  26. 26.
    Yu JC, Sundqvist B, Tonpheng B, Andersson O (2014) Thermal conductivityof highly crystallized polyethylene. Polymer 55:195–200CrossRefGoogle Scholar
  27. 27.
    Xie BH, Huang X, Zhang GJ (2013) High thermal conductive polyvinylalcohol composites with hexagonal boron nitride microplateletsas fillers. Compos Sci Technol 85:98–103CrossRefGoogle Scholar
  28. 28.
    Liem H, Choy HS (2013) Superior thermal conductivity of polymer nanocomposites by using graphene and boron nitride as fillers. Solid State Commun 163:41–45CrossRefGoogle Scholar
  29. 29.
    Zhou T, Wang X, Cheng P, Wang T, Xiong D, Wang X (2013) Improving thethermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles. Express Polym Lett 7:585–594CrossRefGoogle Scholar
  30. 30.
    Wypych G (2000) Handbook of fillers: physical properties of fillers and filled materials, 2nd edn. Chem Tec Publishing, Toronto, 831ppGoogle Scholar
  31. 31.
    Yu SZ, Hing P, Hu X (2002) Thermal conductivity of polystyrene-aluminum nitride composite. Compos Part A 33:289–292CrossRefGoogle Scholar
  32. 32.
    Pezzotti G, Kamada I, Miki S (2000) Thermal conductivity of AlN/polystyrene interpenetrating networks. J Eur Ceram Soc 20:1197–1203CrossRefGoogle Scholar
  33. 33.
    Morelli DT, Heremans JP (2002) Thermal conductivity of germanium, sil-icon, and carbon nitrides. Appl Phys Lett 81:5126–5128CrossRefGoogle Scholar
  34. 34.
    Zhou TL, Wang X, Mingyuan GU, Liu XH (2008) Study of the thermal conduction mechanism of nano-SiC/DGEBA/EMI-2,4 composites. Polymer 49:4666–4672CrossRefGoogle Scholar
  35. 35.
    Xia ZP, Li ZQ (2007) Structural evolution of hexagonal BN and cubic BN during ball milling. J Alloys Compd 436:170–173CrossRefGoogle Scholar
  36. 36.
    Teng CC, Ma CCM, Chiou KC, Lee TM (2012) Synergetic effect of thermal conductive properties of epoxy composites containing function-alized multi-walled carbon nanotubes and aluminum nitride. Compos Part B 43:265–271CrossRefGoogle Scholar
  37. 37.
    Yung KC, Liem H (2007) Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. J Appl Polym Sci 106:3587–3591CrossRefGoogle Scholar
  38. 38.
    Shenogina N, Shenogin S, Xue L, Keblinski P (2005) On the lack of thermal percolation in carbon nanotube composites. Appl Phys Lett 87:133106-1–3CrossRefGoogle Scholar
  39. 39.
    Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P et al (2003) Interfacial heat flow in carbon nanotube suspensions. Nat Mater 2:731–734CrossRefGoogle Scholar
  40. 40.
    Shenogin S, Xue L, Ozisik R, Keblinski P, Cahill DG (2004) Role of thermal boundary resistance on the heat flow in carbonnanotube composites. J Appl Phys 95:8136–8144CrossRefGoogle Scholar
  41. 41.
    Seong Yeol Pak, Hyung Min Kim, Seong Yun Kim, Jae Ryoun Youn (2012) Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers. Carbon 50:4830–4838CrossRefGoogle Scholar
  42. 42.
    Diez-Pascual AM, Naffakh M (2013) Enhancing the thermomechanical behaviour of poly(phenylene sulphide) based composites via incorporation of covalently grafted carbon nanotubes. Compos Part Appl Sci Manuf 54:10–19CrossRefGoogle Scholar
  43. 43.
    Huang XY, Jiang PK, Tanaka T (2011) A review of dielectric polymer composites with high thermal conductivity. IEEE Electr Insul Mag 27:8–16CrossRefGoogle Scholar
  44. 44.
    Henry A, Chen G (2008) High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys Rev Lett 101(23):235502CrossRefGoogle Scholar
  45. 45.
    Luo TF, Esfarjani K, Shiomi J, Henry A, Chen G (2011) Molecular dynam-ics simulation of thermal energy transport in polydimethylsiloxane(PDMS). J Appl Phys 109:074321/1–74321Google Scholar
  46. 46.
    Junwei Gu, Yongqiang Guo, Xutong Yang, Chaobo Liang, Wangchang Geng,Lin Tang, Nan Li, Qiuyu Zhang (2017) Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers. Compos A Appl Sci Manuf. CrossRefGoogle Scholar
  47. 47.
    Gao Y, Fu Q, Niu LY, Shi ZM (2015) Enhancement of the tensile strength in poly (phenylene sulfide) and multi-walled carbon nanotube nanocomposites by hot stretching. J Mater Sci 50(10):3622–3630CrossRefGoogle Scholar
  48. 48.
    Chen LF, Zhao PF, Xie HQ, Yu W (2016) Thermal properties of epoxy resin based thermal interfacial materials by filling Ag nanoparticle-decorated graphene nanosheets. Compos Sci Technol 125:17e21Google Scholar
  49. 49.
    Xutong Yang, Lin Tang, Yongqiang Guo, Chaobo Liang, Qiuyu Zhang, Kaichang Kou, Junwei Gu (2017) Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers. Compos A Appl Sci Manuf 101:237–242. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Manoj Bhalwankar
    • 1
    • 2
    Email author
  • Sachin Mastud
    • 3
  • Sandesh Jadkar
    • 4
  1. 1.Production Engineering DepartmentVeermata Jijabai Technological InstituteMumbaiIndia
  2. 2.School of Mechanical and Civil EngineeringMIT Academy of EngineeringAlandiIndia
  3. 3.Mechanical Engineering DepartmentVeermata Jijabai Technological InstituteMumbaiIndia
  4. 4.School of Energy SciencesSavitribai Phule Pune UniversityAbstractPuneIndia

Personalised recommendations