Dynamic Mechanical Properties of Glass Fiber Reinforced Epoxy Composites with Micro and Nanofillers

  • Santhy P. Kuruvilla
  • N. M. Renukappa
  • B. Suresha
Conference paper


Glass fiber strengthened epoxy (GE) composites are notably used in the field of high voltage insulation due to their stronger overall performance at extended temperatures. This paper discusses the benefits of nano and micro fillers in enhancing the dynamic mechanical properties of GE composites with the information derived from Dynamic Mechanical Analysis (DMA) and Differential Scanning Calorimetry (DSC). The composites are manufactured by pultrusion technique through dispersion of micro and nano fillers using high shear mixing accompanied by way of ultrasonication. The results evinced that the GE composite with MgO reveals lowest damping factor with a reduction in a damping factor of 44%, reduction in loss modulus of 55% as well an increase in glass transition temperature (Tg) of 29% in contrast to that of GE composite except for fillers. The better performance might be attributed to better adhesion and dispersion of particles in epoxy resin which contributes extended load transfer.


GE composites Micro and nanofillers Pultrusion Storage modulus Loss modulus Glass transition temperature 


  1. 1.
    Bai Y, Post NL, Lesko JJ, Keller T (2008) Experimental investigations on temperature-dependent thermo-physical and mechanical properties of pultruded GFRP composites. Thermochim Acta 469:28–35CrossRefGoogle Scholar
  2. 2.
    Plesa I, Notingher PV, Schlögl S, Sumereder C, Muhr M (2016) Properties of polymer composites used in high voltage applications. Polymers 8:5CrossRefGoogle Scholar
  3. 3.
    Looms JST (1990) Insulators for high voltages, IEE series. Peter Pelegrinus, LondonGoogle Scholar
  4. 4.
    Gorur RS, Cherney EA, Burnham JT (1999) Outdoor insulators, Ravi S. Gorur, Inc., Phoenix, Arizona 85044, USAGoogle Scholar
  5. 5.
    Grammatikose SA, Johns RG, Evernden M, Correa JR (2016) Thermal cycling effects on the durability of pultruded GFRP material for off-shore civil engineering structures. Compos Struct 153:297–310CrossRefGoogle Scholar
  6. 6.
    Grammatikos SA, Evernden M, Mitchels J, Zafari B, Mottram JE, Papanicolau GC (2016) On the response to hygrothermal aging of pultruded FRPs used in the civil engineering sector. Mater Des 96:283–295CrossRefGoogle Scholar
  7. 7.
    Šturm, Grimberg, Gruml (2013) Effect of moisture absorption on mechanical properties of polyester composites evaluated with destructive and nondestructive tests. In: 12th international conference of the Slovenian society for non- destructive testing in engineering, September, 2013Google Scholar
  8. 8.
    Fairuz AM, Sapuan SM, Zainudin ES, Jaafar CNA (2014) Polymer composite manufacturing using a pultrusion process: a review 1. Am J Appl Sci 11(10):1798–1810CrossRefGoogle Scholar
  9. 9.
    Robert M, Benmokrane B (2010) Behavior of GFRP reinforcing bars subjected to extreme temperature. J Compos Constr 14(4):353–360. CrossRefGoogle Scholar
  10. 10.
    Asi O (2010) An experimental study on the bearing strength behavior of Al2O3 particle filler glass fiber reinforced epoxy composites pinned joints. Compos Struct 92:354–363CrossRefGoogle Scholar
  11. 11.
    Shukla DK, Srivatsava RK (2011) Effect of alumina platelet reinforcement on dynamic mechanical properties of epoxy. In: Proceedings of the world congress on engineering, III, London, U.K.Google Scholar
  12. 12.
    Zhao H, Li RKY (2008) Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites. Compos part A 39:602–611CrossRefGoogle Scholar
  13. 13.
    Yan-Jun Van, Li Xue Gong, Long-Cheng Tang, Lian-Bin Wu, Jian-Xiong Jiang (2014) Mechanical properties of epoxy composites filled with silane functionalized graphene oxide. J Compos Part A 64:79–89CrossRefGoogle Scholar
  14. 14.
    Pan Luo , Man Xu , Shaohui Wang, and Yang Xu Structural, dynamic mechanical and dielectric properties of mesoporous silica/epoxy resin nanocomposites, IEEE Trans Dielectr Electr Insul Vol. 24 (\), pp. 1685-1697 (2017)Google Scholar
  15. 15.
    Jacob GC, Starbuck JM, Fellers JF, Simunovic S, Boeman RG (2006) Fracture toughness in random chopped fiber reinforced composites and their strain rate dependence. J Appl Polym Sci 100:695–701CrossRefGoogle Scholar
  16. 16.
    T Imai, F Sawa, , T Ozaki, T Shimizu, R Kido, M Kozako, T Tanaka, “Influence of temperature on mechanical and insulation properties of epoxy-layered silicate nanocomposite”, IEEE Trans Dielectr Electr Insul., Vol. 13, pp 445–452, (2005)CrossRefGoogle Scholar
  17. 17.
    Imai T, Sawa F, Ozaki T, Shimizu T, Kido R, Kozako M, Tanaka T (2005) Insulation properties of nano and micro filler composite. In: IEEE conference on electrical insulation and dielectric phenomena, Nashville, TN, USA, pp 171–174Google Scholar
  18. 18.
    Sanaz Abdolmohammadi, Samira Siyamak, Nor Azowa Ibrahim, Wan Md Zin Wan Yunus, Mohamad Zaki Ab Rahman, Susan Azizi, Asma Fatehia (2012) Enhancement of mechanical and thermal properties of polycaprolactone/chitosan blend by calcium carbonate nanoparticles. Int J Mol Sci 13:4508–4522CrossRefGoogle Scholar
  19. 19.
    Agrawal G, Patnayak A, Sharma RK (2014) Mechanical and thermo mechanical properties of unidirectional and short carbon fiber reinforced epoxy composites. J Eng Sci Technol 9(5):590–604Google Scholar
  20. 20.
    Xie C, Gan Y, Ben C, Li C (2016) Pyrolysis kinetics analysis on FRP rod of composite insulators by DSC, pp 1–4. CrossRefGoogle Scholar
  21. 21.
    Carola Esposito Corcione, Mariaenrica Frigione (2012) Review characterization of nanocomposites by thermal analysis. Materials 5:2960–2980CrossRefGoogle Scholar
  22. 22.
    B. Qi, S. R. Lu∗ , X. E. Xiao, L. L. Pan, F. Z. Tan, J. H. Yu Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide, Express Polym Lett Vol. 8, No. 7 pp 467–479 (2014)CrossRefGoogle Scholar
  23. 23.
    Moon il Kim, Suhyun Kim, Taehee Kim, Dong Koo Lee, Bongkuk Seo, and Choong-Sun Lim (2017) Mechanical and thermal properties of epoxy composites containing zirconium oxide impregnated Halloysite Nano tubes. Coatings 7:231CrossRefGoogle Scholar
  24. 24.
    Bai Y, Keller T (2009) Time dependence of material properties of FRP composites in fire. J Compos Mater 43(21):2469–2484CrossRefGoogle Scholar
  25. 25.
    Tsaguropoulos G, Eisenberg A (1995) Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers. Similarities and differences with random ionomors. Macromolecules 28(18):6067–6077CrossRefGoogle Scholar
  26. 26.
    Xie T, Rousseau IA (2009) Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 50(8):1852–1856CrossRefGoogle Scholar
  27. 27.
    Papakonstantopoulos GJ, Doxastakis M, Nealey PF, Barrat J, Pablo JJD (2007) Calculation of local mechanical properties of filled polymers. Phys Rev E 75(1):031803CrossRefGoogle Scholar
  28. 28.
    Dana Luca Motoc, Santiago FerrandizBou, Rafael Balart Gimeno (2014) Effects of fiber orientation and content on the mechanical, dynamic mechanical and thermal expansion properties of multi-layered glass/carbon fiber-reinforced polymer composites. J Compos Mater 49(10):1211–1221Google Scholar
  29. 29.
    Kumar DS, Shukla MJ, Mahato KK, Rathore DK, Prusty RK, Ray BC (2015) Effect of post-curing on the thermal and mechanical behavior of GFRP composites. In: 4th national conference on processing and characterization of materials, IOP Conference. Series: Material science and engineering, p 75Google Scholar
  30. 30.
    Panda P, Mishra G, Mantry S (2013) A study on mechanical, thermal, and electrical properties of glass fiber-reinforced epoxy hybrid composites filled with plasma-synthesized AlN. J Compos Mater 48(25):3073–3082CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Santhy P. Kuruvilla
    • 1
    • 2
  • N. M. Renukappa
    • 3
  • B. Suresha
    • 4
  1. 1.JSS Research foundation, JSS Technical Institutions CampusMysuruIndia
  2. 2.Maharaja Institute of Technology MysoreMysuruIndia
  3. 3.Sri Jayachamarajendra College of EngineeringMysuruIndia
  4. 4.The National Institute of EngineeringMysuruIndia

Personalised recommendations