Advertisement

High-Performance Potentiostatic Electro-Polymerized Polypyrrole (PPy) Electrode for Electrochemical Performance

  • S. M. Ingole
  • Y. H. Navale
  • Y. M. Jadhav
  • A. S. Salunkhe
  • V. B. Patil
Conference paper

Abstract

Polypyrrole (PPy) electrode was electro-polymerized by potentiostatic electrode position method on stainless steel substrate for super capacitor application. The morphology and elemental analysis of polypyrrole electrode were studied using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The electrochemical properties of PPy have been examined using cyclic voltammetry, galvanostatic charge-discharge, cyclic stability and electrochemical impedance spectroscopy measurements in 1 M H2SO4 electrolytes. A high specific capacitance of 531 Fg−1 was obtained within the potential range of −0.5–0.7 V in 1 M H2SO4 electrolyte. Additionally, PPy electrode exhibited high discharge/charge efficiency of 82%. The present study signifies the successful application of polypyrrole thin films as a supercapacitor electrode.

Keywords

Polypyrrole Potentiostaic electrodeposition XPS SEM Cyclic voltammetry Impedance 

References

  1. 1.
    Winter M, Brodd RJ (2004) What are batteries, fuel cells and supercapacitors. Chem Rev 104:4245–4269CrossRefGoogle Scholar
  2. 2.
    Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. J Electrochim Acta 45:2483–2498CrossRefGoogle Scholar
  3. 3.
    Kaskhedikar NA, Maier J (2009) Lithium storage in carbon nanostructures. J Adv Mater 21:2664–2680CrossRefGoogle Scholar
  4. 4.
    An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. J Adv Funct Mater 11:387–392CrossRefGoogle Scholar
  5. 5.
    Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. J Chem Mater 12:608–622CrossRefGoogle Scholar
  6. 6.
    Novak P, Muller K, Santana SV, Haas O (1997) Electrochemically active polymers for rechargeable batteries. J Chem Rev 97:207–282CrossRefGoogle Scholar
  7. 7.
    Gerard M, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. J Biosens Bioelectron 17:345–359CrossRefGoogle Scholar
  8. 8.
    Sadki S, Schottland P, Brodie N, Sabouraud G (2000) The mechanisms of pyrrole electropolymerization. J Chem Soc Rev 29:283–293CrossRefGoogle Scholar
  9. 9.
    Hashmi SA, Kumar A, Tripathi SK (2005) Investigations on electrochemical supercapacitors using polypyrrole redox electrodes and PMMA based gel electrolytes. J Eur Polymer 411:373–1379Google Scholar
  10. 10.
    Wang J, Xu Y, Du X (2010) High charge/discharge rate polypyrrole films prepared by pulse current polymerization. J Synth Metal 160:1826–1831CrossRefGoogle Scholar
  11. 11.
    Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sources 153:413–418CrossRefGoogle Scholar
  12. 12.
    Frackowiak E, Jurewicz K, Delpeux S (2001) Nanotubular materials for supercapacitors. J Power Sources 97–98:822CrossRefGoogle Scholar
  13. 13.
    Wang J, Xu Y, Du X (2011) Toward a high specific power and high stability polypyrrole supercapacitors. J Synth Metal 161:1141–1144CrossRefGoogle Scholar
  14. 14.
    Navale YH, Navale ST, Chougule MA, Ingole SM, Stadler FJ, Mane RS, Naushad M, Patil VB (2017) Electrochemical synthesis and potential electrochemical energy storage performance of nodule-type polyaniline. J Colloid Interface Sci 487:458–464CrossRefGoogle Scholar
  15. 15.
    More PD, Jadhav PR, Ingole SM, Navale YH, Patil VB (2017) Preparation, structural and electrochemical supercapacitive properties of sprayed manganese oxide film electrode. J Mater Sci Mater Electron 28:707–714CrossRefGoogle Scholar
  16. 16.
    Ingole SM, Navale ST, Navale YH, Stadler FJ, Mane RS, Patil VB (2017) Galvanostatically electroplated MnO2 nanoplate-type electrode for potential electrochemical pseudocapacitor application. J Solid State Electrochem 21:1817–1826CrossRefGoogle Scholar
  17. 17.
    Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Beguin F (2002) Enhanced capacitance of carbon nanotubes through chemical activation. J Chem Phys Lett 361:35–41CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • S. M. Ingole
    • 1
    • 2
  • Y. H. Navale
    • 1
  • Y. M. Jadhav
    • 1
  • A. S. Salunkhe
    • 1
  • V. B. Patil
    • 1
  1. 1.Functional Materials Research Laboratory, School of Physical SciencesSolapur UniversitySolapurIndia
  2. 2.Arts, Commerce and Science College OndePalgharIndia

Personalised recommendations