Effect of Nylon-66 Interleaving on Dielectric Properties of Carbon-Epoxy Composites

  • M. Umashankar
  • N. M. Renukappa
  • Kunigal Shivakumar
  • J. Sundara Rajan
Conference paper


This paper discusses the dielectric properties epoxy carbon fiber composites with interleaving of nylon-66 nano-fibers. The non-interleaved and interleaved composites are observed to exhibit a relaxation peak at 100 kHz. The variations in the complex electric modulus reveal that interfacial relaxation of Maxwell-Wagner-Sillars type exists in the composites. The ac conductivity of the non-interleaved composite is explained using the Universal power-law. The conduction mechanism of the interleaved composites is attributed to the long-range diffusion of ions.


Nylon interleaving Carbon fibers Dielectric loss Electric modulus AC conductivity Composites 



Authors are grateful to the Center for Composite Materials Research, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA and JSS Research Foundation, Mysore, for the support and encouragement given to Umashankar M, faculty pursuing the Ph.D. work.


  1. 1.
    Lee WI, Springer GS (1984) Interaction of electromagnetic radiation with organic matrix composites. J Compos Mater 18:357–409CrossRefGoogle Scholar
  2. 2.
    Ramadin Y, Jawad SA, Musameh SM, Ahmad M, Zihlif AM (1994) Electrical and electromagnetic shielding behavior of laminated epoxy-carbon fiber composite. Polym Int 34:145–150CrossRefGoogle Scholar
  3. 3.
    Ahmed HA, Shivakumar KN (2016) Effect of amount of nylon-66 nanofiber interleaf on impact performance of AS4/3501-6 carbon-epoxy composite laminate. In: 57th AIAA/ASCE/AHS/ASC structures, structural dynamics and materials conference. American Institute of Aeronautics and AstronauticsGoogle Scholar
  4. 4.
    Umashankar M, Renukappa NM, Shivakumar K, Rajan JS (2018) Electromagnetic shielding effectiveness of Nylon-66 nanofiber interleaved carbon epoxy composites. IEEE Trans Electromagn CompatGoogle Scholar
  5. 5.
    Kim HG, Shin HJ, Kim GC, Park HJ, Moon HJ, Kwac LK (2014) Electromagnetic interference shielding characteristics for orientation angle and number of plies of carbon fiber reinforced plastic. Carbon Lett 15:268–276CrossRefGoogle Scholar
  6. 6.
    Shivakumar K, Lingaiah S, Chen H, Akangah P, Swaminathan G, Russell L (2009) Polymer nanofabric interleaved composite laminates. Am Inst Aeronaut Astronaut J 47:1723–1729CrossRefGoogle Scholar
  7. 7.
    Shivalingappa KS, Robert S (2008) Electrospinning of Nylon-66 polymer Nanofabrics. In: 49th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference. American Institute of Aeronautics and AstronauticsGoogle Scholar
  8. 8.
    Elimat ZM, Hamideen MS, Schutle KL, Wittich H, de la Vega A, Wichmann M, Buschhorn S (2010) Dielectric properties of epoxy/short carbon fiber composites. J Mater Sci 45:5196–5203CrossRefGoogle Scholar
  9. 9.
    Bobadilla Sanchez EA, Martínez-Barrera G, Brostow W, Datashvili T (2009) Effects of polyester fibers and gamma irradiation on mechanical properties of polymer concrete containing CaCO3 and silica sand. Express Polym Lett 3:615–620CrossRefGoogle Scholar
  10. 10.
    Soares BG, Leyva ME, Barra GMO, Khastgir D (2006) Dielectric behavior of polyaniline synthesized by different techniques. Eur Polym J 42:676–686CrossRefGoogle Scholar
  11. 11.
    Abd-El-Messiehand SL, Abd-El-Nour KN (2003) Effect of curing time and sulfur content on the dielectric relaxation of styrene butadiene rubber. J Appl Polym Sci 88:1613–1621CrossRefGoogle Scholar
  12. 12.
    Ying X, Yuezhen B, Chiang CK, Masaru M (2007) Dielectric effects on positive temperature coefficient composites of polyethylene. Carbon 45:1302–1309CrossRefGoogle Scholar
  13. 13.
    Macedo PB, Moynihan CT, Bose R (1972) The role of ionic diffusion in polarization in vitreous ionic conductors. Phys Chem Glasses 13:171–179Google Scholar
  14. 14.
    Tsangaris GM, Psarrasand GC, Kouloumbi N (1998) Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci 33:2027–2037CrossRefGoogle Scholar
  15. 15.
    Ben Amor I, Rekik H, Kaddami H, Raihane M, Arous M, Kallel A (2009) Studies of dielectric relaxation in natural fiber-polymer composites. J Electrost 67:717–722CrossRefGoogle Scholar
  16. 16.
    Jonscher AK (1978) Analysis of the alternating current properties of ionic conductors. J Mater Sci 13:555–562Google Scholar
  17. 17.
    Atta (2003) Alternating current conductivity and dielectric properties of newly prepared poly (bis thiourea sulphoxide). Int J Polym Mater 52:361–372CrossRefGoogle Scholar
  18. 18.
    Chandra Bose P, Balaya PT, Ramasamy S (2003) Thermoelectrical the behavior of zeolite/epoxy composites. J Phys Chem Solids 64:659–663CrossRefGoogle Scholar
  19. 19.
    Louati M, Garouri K, Guidara TM (2005) AC electrical properties of the mixed crystal (NH4)3H(SO4)1.42(SeO4)0.58. J Phys Chem Solids 66:762–765CrossRefGoogle Scholar
  20. 20.
    Chen RH, Chen L-F, Chia C-T (2007) Impedance spectroscopic studies on congruent LiNbO3 single crystal. J Phys Condens Matter 19:086225CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • M. Umashankar
    • 1
  • N. M. Renukappa
    • 2
  • Kunigal Shivakumar
    • 3
  • J. Sundara Rajan
    • 4
  1. 1.JSS Research Foundation, JSSTICMysuruIndia
  2. 2.Sri Jayachamarajendra College of EngineeringMysuruIndia
  3. 3.Center for Composite Materials ResearchNorth Carolina A & T State UniversityGreensboroUSA
  4. 4.Insulation Engineering Consultant and Academic CounsellorBengaluruIndia

Personalised recommendations